These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
473 related articles for article (PubMed ID: 31109062)
1. An Unsupervised Method for Artefact Removal in EEG Signals. Mur A; Dormido R; Duro N Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109062 [TBL] [Abstract][Full Text] [Related]
2. Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties. Rogasch NC; Thomson RH; Farzan F; Fitzgibbon BM; Bailey NW; Hernandez-Pavon JC; Daskalakis ZJ; Fitzgerald PB Neuroimage; 2014 Nov; 101():425-39. PubMed ID: 25067813 [TBL] [Abstract][Full Text] [Related]
3. Improved artefact removal from EEG using Canonical Correlation Analysis and spectral slope. Janani AS; Grummett TS; Lewis TW; Fitzgibbon SP; Whitham EM; DelosAngeles D; Bakhshayesh H; Willoughby JO; Pope KJ J Neurosci Methods; 2018 Mar; 298():1-15. PubMed ID: 29408174 [TBL] [Abstract][Full Text] [Related]
4. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. Tamburro G; Fiedler P; Stone D; Haueisen J; Comani S PeerJ; 2018; 6():e4380. PubMed ID: 29492336 [TBL] [Abstract][Full Text] [Related]
5. Automatic artefact removal in a self-paced hybrid brain- computer interface system. Yong X; Fatourechi M; Ward RK; Birch GE J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499 [TBL] [Abstract][Full Text] [Related]
6. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA. Mahajan R; Morshed BI IEEE J Biomed Health Inform; 2015 Jan; 19(1):158-65. PubMed ID: 24968340 [TBL] [Abstract][Full Text] [Related]
7. A method for detection of Alzheimer's disease using ICA-enhanced EEG measurements. Melissant C; Ypma A; Frietman EE; Stam CJ Artif Intell Med; 2005 Mar; 33(3):209-22. PubMed ID: 15811786 [TBL] [Abstract][Full Text] [Related]
9. Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA. Javed E; Faye I; Malik AS; Abdullah JM J Neurosci Methods; 2017 Nov; 291():150-165. PubMed ID: 28842191 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the Common Independent Component Analysis Approaches in Biological Signals for Removing Cardiac Field Artefact from EEG. Ebrahimpour M; Abbott D; Baumert M Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083279 [TBL] [Abstract][Full Text] [Related]
11. An improved artifacts removal method for high dimensional EEG. Hou J; Morgan K; Tucker DM; Konyn A; Poulsen C; Tanaka Y; Anderson EW; Luu P J Neurosci Methods; 2016 Aug; 268():31-42. PubMed ID: 27156989 [TBL] [Abstract][Full Text] [Related]
12. Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction. de Munck JC; van Houdt PJ; Gonçalves SI; van Wegen E; Ossenblok PP Neuroimage; 2013 Jan; 64():407-15. PubMed ID: 22995780 [TBL] [Abstract][Full Text] [Related]
14. EEG artifact elimination by extraction of ICA-component features using image processing algorithms. Radüntz T; Scouten J; Hochmuth O; Meffert B J Neurosci Methods; 2015 Mar; 243():84-93. PubMed ID: 25666892 [TBL] [Abstract][Full Text] [Related]
15. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. Chowdhury ME; Mullinger KJ; Glover P; Bowtell R Neuroimage; 2014 Jan; 84():307-19. PubMed ID: 23994127 [TBL] [Abstract][Full Text] [Related]
16. Wielding and evaluating the removal composition of common artefacts in EEG signals for driving behaviour analysis. Qi G; Zhao S; Ceder AA; Guan W; Yan X Accid Anal Prev; 2021 Sep; 159():106223. PubMed ID: 34119819 [TBL] [Abstract][Full Text] [Related]
17. Automatic removal of high-amplitude artefacts from single-channel electroencephalograms. Teixeira AR; Tomé AM; Lang EW; Gruber P; Martins da Silva A Comput Methods Programs Biomed; 2006 Aug; 83(2):125-38. PubMed ID: 16876903 [TBL] [Abstract][Full Text] [Related]
18. Effects of signal artefacts on electroencephalography spectral power during sleep: quantifying the effectiveness of automated artefact-rejection algorithms. Liu J; Ramakrishnan S; Laxminarayan S; Neal M; Cashmere DJ; Germain A; Reifman J J Sleep Res; 2018 Feb; 27(1):98-102. PubMed ID: 28656650 [TBL] [Abstract][Full Text] [Related]
19. Automated detection of artefacts in neonatal EEG with residual neural networks. Webb L; Kauppila M; Roberts JA; Vanhatalo S; Stevenson NJ Comput Methods Programs Biomed; 2021 Sep; 208():106194. PubMed ID: 34118491 [TBL] [Abstract][Full Text] [Related]
20. Time-frequency analysis of resting state and evoked EEG data recorded at higher magnetic fields up to 9.4 T. Abbasi O; Dammers J; Arrubla J; Warbrick T; Butz M; Neuner I; Shah NJ J Neurosci Methods; 2015 Nov; 255():1-11. PubMed ID: 26213220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]