These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31109126)

  • 1. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones.
    Xu S; Tang Q; Jin L; Pan Z
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals.
    Raja Sekaran S; Pang YH; You LZ; Yin OS
    PLoS One; 2024; 19(8):e0304655. PubMed ID: 39137226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data.
    Ahmed Bhuiyan R; Ahmed N; Amiruzzaman M; Islam MR
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition.
    Tian Y; Zhang J; Chen L; Geng Y; Wang X
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Sensor-Based Human Activity Recognition via Two-Layer Diversity-Enhanced Multiclassifier Recognition Method.
    Tian Y; Wang X; Chen L; Liu Z
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; MacĂȘdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone Based Human Activity Recognition with Feature Selection and Dense Neural Network.
    Bashar SK; Al Fahim A; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5888-5891. PubMed ID: 33019314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.
    Capela NA; Lemaire ED; Baddour N
    PLoS One; 2015; 10(4):e0124414. PubMed ID: 25885272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matched Filter Interpretation of CNN Classifiers with Application to HAR.
    Farag MM
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group Decision Making-Based Fusion for Human Activity Recognition in Body Sensor Networks.
    Tian Y; Zhang J; Chen Q; Hou S; Xiao L
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Sensor Deployment for Multi-Sensor-Based HAR System with Improved Glowworm Swarm Optimization Algorithm.
    Tian Y; Zhang J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.