These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 31109126)
21. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory. Bragança H; Colonna JG; Lima WS; Souto E Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830 [TBL] [Abstract][Full Text] [Related]
22. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition. Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875 [TBL] [Abstract][Full Text] [Related]
23. Guided regularized random forest feature selection for smartphone based human activity recognition. Thakur D; Biswas S J Ambient Intell Humaniz Comput; 2023; 14(7):9767-9779. PubMed ID: 35601253 [TBL] [Abstract][Full Text] [Related]
25. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices. Bhat G; Tran N; Shill H; Ogras UY Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046 [TBL] [Abstract][Full Text] [Related]
26. Evaluating the Impact of a Two-Stage Multivariate Data Cleansing Approach to Improve to the Performance of Machine Learning Classifiers: A Case Study in Human Activity Recognition. Neira-Rodado D; Nugent C; Cleland I; Velasquez J; Viloria A Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230844 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670 [TBL] [Abstract][Full Text] [Related]
28. Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones. Song Z; Park HJ; Thapa N; Yang JG; Harada K; Lee S; Shimada H; Park H; Park BK Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632145 [TBL] [Abstract][Full Text] [Related]
29. Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction. Tseng YH; Wen CY Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765863 [TBL] [Abstract][Full Text] [Related]
30. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning. Chung S; Lim J; Noh KJ; Kim G; Jeong H Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845 [TBL] [Abstract][Full Text] [Related]
31. Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement. Herrera-Alcántara O; Barrera-Animas AY; González-Mendoza M; Castro-Espinoza F Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987130 [TBL] [Abstract][Full Text] [Related]
32. MagIO: Magnetic Field Strength Based Indoor- Outdoor Detection with a Commercial Smartphone. Ashraf I; Hur S; Park Y Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424467 [TBL] [Abstract][Full Text] [Related]
33. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor. Sinha VK; Patro KK; Pławiak P; Prakash AJ Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640971 [TBL] [Abstract][Full Text] [Related]
34. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Steven Eyobu O; Han DS Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377 [TBL] [Abstract][Full Text] [Related]
35. Machine Learning Estimation of COVID-19 Social Distance using Smartphone Sensor Data. Semenov O; Agu E; Pahlavan K Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4452-4457. PubMed ID: 34892208 [TBL] [Abstract][Full Text] [Related]
36. Body Temperature Monitoring for Regular COVID-19 Prevention Based on Human Daily Activity Recognition. Zhang L; Zhu Y; Jiang M; Wu Y; Deng K; Ni Q Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833616 [TBL] [Abstract][Full Text] [Related]
37. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry. Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025 [TBL] [Abstract][Full Text] [Related]
38. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer. Barua A; Jiang X; Fuller D Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358 [TBL] [Abstract][Full Text] [Related]
39. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System. Alo UR; Nweke HF; Teh YW; Murtaza G Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424 [TBL] [Abstract][Full Text] [Related]
40. A Method for Sensor-Based Activity Recognition in Missing Data Scenario. Hossain T; Ahad MAR; Inoue S Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]