These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31109126)

  • 41. Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors.
    Sousa Lima W; de Souza Bragança HL; Montero Quispe KG; Pereira Souto EJ
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mobile sensors based platform of Human Physical Activities Recognition for COVID-19 spread minimization.
    Sardar AW; Ullah F; Bacha J; Khan J; Ali F; Lee S
    Comput Biol Med; 2022 Jul; 146():105662. PubMed ID: 35654623
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of chewing from piezoelectric film sensor signals using ensemble classifiers.
    Farooq M; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4929-4932. PubMed ID: 28269374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition.
    Scheurer S; Tedesco S; Brown KN; O'Flynn B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098362
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition.
    Fong S; Song W; Cho K; Wong R; Wong KK
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of deep learning for smartphone-based human activity recognition.
    Stampfler T; Elgendi M; Fletcher RR; Menon C
    Front Public Health; 2023; 11():1086671. PubMed ID: 36926170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.
    Guo Y; Liu S; Li Z; Shang X
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):118. PubMed ID: 29671390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition.
    Hur T; Bang J; Huynh-The T; Lee J; Kim JI; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CSITime: Privacy-preserving human activity recognition using WiFi channel state information.
    Yadav SK; Sai S; Gundewar A; Rathore H; Tiwari K; Pandey HM; Mathur M
    Neural Netw; 2022 Feb; 146():11-21. PubMed ID: 34839089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Multi-Layer Classifier Model XR-KS of Human Activity Recognition for the Problem of Similar Human Activity.
    Tan Q; Qin Y; Tang R; Wu S; Cao J
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067987
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HarMI: Human Activity Recognition Via Multi-Modality Incremental Learning.
    Zhang X; Yu H; Yang Y; Gu J; Li Y; Zhuang F; Yu D; Ren Z
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):939-951. PubMed ID: 34061754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Research on Construction Workers' Activity Recognition Based on Smartphone.
    Zhang M; Chen S; Zhao X; Yang Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using a stacked ensemble learning framework to predict modulators of protein-protein interactions.
    Gao M; Zhao L; Zhang Z; Wang J; Wang C
    Comput Biol Med; 2023 Jul; 161():107032. PubMed ID: 37230018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model.
    Tahir SBUD; Dogar AB; Fatima R; Yasin A; Shafiq M; Khan JA; Assam M; Mohamed A; Attia EA
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance Analysis of Boosting Classifiers in Recognizing Activities of Daily Living.
    Rahman S; Irfan M; Raza M; Moyeezullah Ghori K; Yaqoob S; Awais M
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving Human Activity Recognition With Wearable Sensors Through BEE: Leveraging Early Exit and Gradient Boosting.
    Yu J; Zhang L; Cheng D; Huang W; Wu H; Song A
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3452-3464. PubMed ID: 39259642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.