These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31109386)

  • 41. Infection with an acanthocephalan helminth reduces anxiety-like behaviour in crustacean host.
    Cozzarolo CS; Perrot-Minnot MJ
    Sci Rep; 2022 Dec; 12(1):21649. PubMed ID: 36522391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores.
    Réveillon T; Rota T; Chauvet É; Lecerf A; Sentis A
    J Anim Ecol; 2022 Oct; 91(10):1975-1987. PubMed ID: 35471565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light.
    Benesh DP; Duclos LM; Nickol BB
    J Parasitol; 2005 Aug; 91(4):731-6. PubMed ID: 17089736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An acanthocephalan parasite boosts the escape performance of its intermediate host facing non-host predators.
    Medoc V; Beisel JN
    Parasitology; 2008 Jul; 135(8):977-84. PubMed ID: 18477417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Parasitism in ecosystem engineer species: A key factor controlling marine ecosystem functioning.
    Pascal L; Grémare A; de Montaudouin X; Deflandre B; Romero-Ramirez A; Maire O
    J Anim Ecol; 2020 Sep; 89(9):2192-2205. PubMed ID: 32271950
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parasite virulence when the infection reduces the host immune response.
    Cornet S; Sorci G
    Proc Biol Sci; 2010 Jun; 277(1689):1929-35. PubMed ID: 20200031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odours.
    Baldauf SA; Thünken T; Frommen JG; Bakker TC; Heupel O; Kullmann H
    Int J Parasitol; 2007 Jan; 37(1):61-5. PubMed ID: 17049528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Does the acanthocephalan parasite Polymorphus minutus modify the energy reserves and antitoxic defences of its intermediate host Gammarus roeseli?
    Gismondi E; Cossu-Leguille C; Beisel JN
    Parasitology; 2012 Jul; 139(8):1054-61. PubMed ID: 22405348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Behavior Response of Amphipods Infected by Hedruris suttonae (Nematoda) and Pseudocorynosoma sp. (Acanthocephala).
    Casalins LM; Brugni NL; Rauque CA
    J Parasitol; 2015 Dec; 101(6):647-50. PubMed ID: 26295566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Density-dependent effects on parasite growth and parasite-induced host immunodepression in the larval helminth Pomphorhynchus laevis.
    Cornet S
    Parasitology; 2011 Feb; 138(2):257-65. PubMed ID: 20696096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.
    Galic N; Grimm V; Forbes VE
    Glob Chang Biol; 2017 Aug; 23(8):2973-2989. PubMed ID: 27935184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A co-invasive microsporidian parasite that reduces the predatory behaviour of its host Dikerogammarus villosus (Crustacea, Amphipoda).
    Bacela-Spychalska K; Rigaud T; Wattier RA
    Parasitology; 2014 Feb; 141(2):254-8. PubMed ID: 24135318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pollution-induced heat shock protein expression in the amphipod Gammarus roeseli is affected by larvae of Polymorphus minutus (Acanthocephala).
    Sures B; Radszuweit H
    J Helminthol; 2007 Jun; 81(2):191-7. PubMed ID: 17578599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parasitism may enhance rather than reduce the predatory impact of an invader.
    Dick JT; Armstrong M; Clarke HC; Farnsworth KD; Hatcher MJ; Ennis M; Kelly A; Dunn AM
    Biol Lett; 2010 Oct; 6(5):636-8. PubMed ID: 20392715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variation and covariation in infectivity, virulence and immunodepression in the host-parasite association Gammarus pulex-Pomphorhynchus laevis.
    Cornet S; Franceschi N; Bollache L; Rigaud T; Sorci G
    Proc Biol Sci; 2009 Dec; 276(1676):4229-36. PubMed ID: 19726474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphus minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts.
    Frank SN; Godehardt S; Nachev M; Trubiroha A; Kloas W; Sures B
    Environ Pollut; 2013 Sep; 180():173-9. PubMed ID: 23770459
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The ecology of fish parasites with particular reference to helminth parasites and their salmonid fish hosts in Welsh rivers: a review of some of the central questions.
    Thomas JD
    Adv Parasitol; 2002; 52():1-154. PubMed ID: 12521260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning.
    Bernabé TN; de Omena PM; Santos VPD; de Siqueira VM; de Oliveira VM; Romero GQ
    Glob Chang Biol; 2018 Jul; 24(7):3170-3186. PubMed ID: 29485732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benthic ecosystem functioning under climate change: modelling the bioturbation potential for benthic key species in the southern North Sea.
    Weinert M; Kröncke I; Meyer J; Mathis M; Pohlmann T; Reiss H
    PeerJ; 2022; 10():e14105. PubMed ID: 36317120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.
    Coen LD; Bishop MJ
    J Invertebr Pathol; 2015 Oct; 131():177-211. PubMed ID: 26341124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.