These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31109548)
1. Valorization of chestnut (Castanea sativa) residues: Characterization of different materials and optimization of the acid-hydrolysis of chestnut burrs for the elaboration of culture broths. Costa-Trigo I; Otero-Penedo P; Outeiriño D; Paz A; Domínguez JM Waste Manag; 2019 Mar; 87():472-484. PubMed ID: 31109548 [TBL] [Abstract][Full Text] [Related]
2. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion. Moldes AB; Bustos G; Torrado A; Domínguez JM Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452 [TBL] [Abstract][Full Text] [Related]
3. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Bustos G; Moldes AB; Cruz JM; Domínguez JM Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258 [TBL] [Abstract][Full Text] [Related]
4. Optimization of activated charcoal detoxification and concentration of chestnut shell hydrolysate for xylitol production. Eryasar-Orer K; Karasu-Yalcin S Biotechnol Lett; 2021 Jun; 43(6):1195-1209. PubMed ID: 33651230 [TBL] [Abstract][Full Text] [Related]
5. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Moldes AB; Torrado A; Converti A; Domínguez JM Appl Biochem Biotechnol; 2006 Dec; 135(3):219-28. PubMed ID: 17299209 [TBL] [Abstract][Full Text] [Related]
6. Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Gullón B; Eibes G; Dávila I; Moreira MT; Labidi J; Gullón P Carbohydr Polym; 2018 Jul; 192():75-83. PubMed ID: 29691037 [TBL] [Abstract][Full Text] [Related]
7. Minerals and organic nitrogen present in grape marc hydrolyzates enhance xylose consumption by Lactobacillus pentosus. Rivera OM; Torrado AM; Moldes AB; Domínguez JM Appl Biochem Biotechnol; 2009 Feb; 152(2):262-74. PubMed ID: 18581267 [TBL] [Abstract][Full Text] [Related]
8. Castanea sativa by-products: a review on added value and sustainable application. Braga N; Rodrigues F; Oliveira MB Nat Prod Res; 2015; 29(1):1-18. PubMed ID: 25204784 [TBL] [Abstract][Full Text] [Related]
9. Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. Do Carmo Barbosa Mendes De Vasconcelos M; Bennett RN; Rosa EA; Ferreira Cardoso JV J Agric Food Chem; 2007 May; 55(9):3508-16. PubMed ID: 17407304 [TBL] [Abstract][Full Text] [Related]
10. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S; Okano K; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702 [TBL] [Abstract][Full Text] [Related]
11. Development of a factorial design to study the effect of the major hemicellulosic sugars on the production of surface-active compounds by L. pentosus. Portilla-Rivera OM; Torrado-Agrasar A; Carballo J; Domínguez JM; Moldes AB J Agric Food Chem; 2009 Oct; 57(19):9057-62. PubMed ID: 19807160 [TBL] [Abstract][Full Text] [Related]
12. Purification, characterization and tyrosinase inhibition activity of polysaccharides from chestnut (Castanea mollissima Bl.) kernel. Tang M; Hou F; Wu Y; Liu Y; Ouyang J Int J Biol Macromol; 2019 Jun; 131():309-314. PubMed ID: 30872058 [TBL] [Abstract][Full Text] [Related]
13. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Canettieri EV; de Moraes Rocha GJ; de Carvalho JA; de Almeida e Silva JB Bioresour Technol; 2007 Jan; 98(2):422-8. PubMed ID: 16473004 [TBL] [Abstract][Full Text] [Related]
14. Identification and Quantification of the Major Phenolic Constituents in Medic A; Kunc P; Zamljen T; Hudina M; Veberic R; Solar A Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685892 [TBL] [Abstract][Full Text] [Related]
15. [Characterization of Phosphorus Forms in Organic Composts and Their Effects on Leaf Phosphorus Content of Song Y; Guo SJ; Zhang L; Sun HJ; Xie MM; Wu YQ; Wang J Huan Jing Ke Xue; 2017 Mar; 38(3):1262-1271. PubMed ID: 29965602 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the saccharification of pretreated chestnut burrs to produce bacteriocins. Costa-Trigo I; Paz A; Otero-Penedo P; Outeiriño D; Pérez Guerra N; Domínguez JM J Biotechnol; 2021 Mar; 329():13-20. PubMed ID: 33476740 [TBL] [Abstract][Full Text] [Related]
17. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Vella FM; Laratta B; La Cara F; Morana A Nat Prod Res; 2018 May; 32(9):1022-1032. PubMed ID: 28920445 [TBL] [Abstract][Full Text] [Related]
18. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Lloyd TA; Wyman CE Bioresour Technol; 2005 Dec; 96(18):1967-77. PubMed ID: 16112484 [TBL] [Abstract][Full Text] [Related]
19. Castanea sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Pinto D; Cádiz-Gurrea ML; Vallverdú-Queralt A; Delerue-Matos C; Rodrigues F Food Res Int; 2021 Jun; 144():110364. PubMed ID: 34053557 [TBL] [Abstract][Full Text] [Related]
20. Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. De Vasconcelos MC; Bennett RN; Rosa EA; Ferreira-Cardoso JV J Sci Food Agric; 2010 Aug; 90(10):1578-89. PubMed ID: 20564434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]