These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 31109552)
21. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Khanmohammadi Z; Afyuni M; Mosaddeghi MR Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292 [TBL] [Abstract][Full Text] [Related]
22. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Chen D; Li Y; Cen K; Luo M; Li H; Lu B Bioresour Technol; 2016 Oct; 218():780-8. PubMed ID: 27423545 [TBL] [Abstract][Full Text] [Related]
23. Pyrolysis of waste tires: A modeling and parameter estimation study using Aspen Plus Ismail HY; Abbas A; Azizi F; Zeaiter J Waste Manag; 2017 Feb; 60():482-493. PubMed ID: 28341422 [TBL] [Abstract][Full Text] [Related]
24. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge. Zhang L; Xiao B; Hu Z; Liu S; Cheng G; He P; Sun L Waste Manag; 2014 Jan; 34(1):180-4. PubMed ID: 24220150 [TBL] [Abstract][Full Text] [Related]
25. Transformation pathways of the carbon-containing group compounds during municipal sludge pyrolysis treatment. Yang T; Xiao Y; Zhao X; Li D; Ma Z; Li W; Gong T; Zhang T; Huang N; Xi B Waste Manag; 2024 Apr; 178():26-34. PubMed ID: 38377766 [TBL] [Abstract][Full Text] [Related]
26. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char. Chanaka Udayanga WD; Veksha A; Giannis A; Lim TT Waste Manag; 2019 Jan; 83():131-141. PubMed ID: 30514459 [TBL] [Abstract][Full Text] [Related]
27. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass. Zhou X; Jia H; Qu C; Fan D; Wang C Environ Technol; 2017 Feb; 38(3):361-369. PubMed ID: 27242020 [TBL] [Abstract][Full Text] [Related]
28. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Magdziarz A; Werle S Waste Manag; 2014 Jan; 34(1):174-9. PubMed ID: 24238993 [TBL] [Abstract][Full Text] [Related]
29. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Domínguez A; Menéndez JA; Inguanzo M; Pís JJ Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008 [TBL] [Abstract][Full Text] [Related]
30. Investigation on the removal of H Zhang J; Tian Y; Yin L; Zuo W; Gong Z; Zhang J Environ Sci Pollut Res Int; 2017 Aug; 24(24):19920-19926. PubMed ID: 28689286 [TBL] [Abstract][Full Text] [Related]
31. Thermal pyrolysis characteristics of polymer flocculated waste activated sludge. Chu CP; Lee DJ; Chang CY Water Res; 2001 Jan; 35(1):49-56. PubMed ID: 11257893 [TBL] [Abstract][Full Text] [Related]
32. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time. Yang X; Yuan C; Xu J; Zhang W Bioresour Technol; 2015 Mar; 179():602-605. PubMed ID: 25542402 [TBL] [Abstract][Full Text] [Related]
33. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism. Zhang J; Zuo W; Tian Y; Yin L; Gong Z; Zhang J J Hazard Mater; 2017 Jun; 331():117-122. PubMed ID: 28249180 [TBL] [Abstract][Full Text] [Related]
34. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Wang Y; Dong B; Fan Y; Hu Y; Zhai X; Deng C; Xu Y; Shen D; Dai X Chemosphere; 2019 Mar; 219():383-389. PubMed ID: 30551104 [TBL] [Abstract][Full Text] [Related]
35. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis. Tsai WT; Lee MK; Chang JH; Su TY; Chang YM Bioresour Technol; 2009 May; 100(9):2650-4. PubMed ID: 19136255 [TBL] [Abstract][Full Text] [Related]
36. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple. Prathiba R; Shruthi M; Miranda LR Waste Manag; 2018 Jun; 76():528-536. PubMed ID: 29576515 [TBL] [Abstract][Full Text] [Related]
37. Experimental study on catalytic pyrolysis of oil sludge under mild temperature. Gong Z; Liu C; Wang M; Wang Z; Li X Sci Total Environ; 2020 Mar; 708():135039. PubMed ID: 31787314 [TBL] [Abstract][Full Text] [Related]
38. Effect of inherent minerals on sewage sludge pyrolysis: Product characteristics, kinetics and thermodynamics. Tang S; Zheng C; Zhang Z Waste Manag; 2018 Oct; 80():175-185. PubMed ID: 30454998 [TBL] [Abstract][Full Text] [Related]
39. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. Hu G; Li J; Zhang X; Li Y J Environ Manage; 2017 May; 192():234-242. PubMed ID: 28171835 [TBL] [Abstract][Full Text] [Related]
40. Effects of temperature and composite alumina on pyrolysis of sewage sludge. Sun Y; Jin B; Wu W; Zuo W; Zhang Y; Zhang Y; Huang Y J Environ Sci (China); 2015 Apr; 30():1-8. PubMed ID: 25872704 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]