These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31109581)

  • 1. Economics of materials in mobile phone preprocessing, focus on non-printed circuit board materials.
    Liu W; Ford P; Uvegi H; Margarido F; Santos E; Ferrão P; Olivetti E
    Waste Manag; 2019 Mar; 87():78-85. PubMed ID: 31109581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article.
    Vats MC; Singh SK
    Waste Manag; 2015 Nov; 45():280-8. PubMed ID: 26112260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.
    Palmieri R; Bonifazi G; Serranti S
    Waste Manag; 2014 Nov; 34(11):2120-30. PubMed ID: 24997795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis.
    Annamalai M; Gurumurthy K
    J Air Waste Manag Assoc; 2021 Mar; 71(3):315-327. PubMed ID: 32841086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.
    Yamane LH; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2011 Dec; 31(12):2553-8. PubMed ID: 21820883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economics of End-of-Life Materials Recovery: A Study of Small Appliances and Computer Devices in Portugal.
    Ford P; Santos E; Ferrão P; Margarido F; Van Vliet KJ; Olivetti E
    Environ Sci Technol; 2016 May; 50(9):4854-62. PubMed ID: 27019006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni and Cu recovery by bioleaching from the printed circuit boards of mobile phones in non-conventional medium.
    Arshadi M; Nili S; Yaghmaei S
    J Environ Manage; 2019 Nov; 250():109502. PubMed ID: 31499463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design-of-experiment analysis of non-destructive detachment of electric parts from printed circuit boards of mobile phones using a cross-flow shredder.
    Ueda T; Fukusawa H; Sunahara N; Yamada H; Oki T; Koyanaka S
    Waste Manag; 2021 Oct; 134():52-56. PubMed ID: 34416670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive characterization of End-of-Life mobile phones for secondary material resources identification.
    Fontana D; Pietrantonio M; Pucciarmati S; Rao C; Forte F
    Waste Manag; 2019 Nov; 99():22-30. PubMed ID: 31470263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative and quantitative determination of heavy metals in waste cellular phones.
    Maragkos KG; Hahladakis JN; Gidarakos E
    Waste Manag; 2013 Sep; 33(9):1882-9. PubMed ID: 23777665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Metal Content of Waste Mobile Phones and Estimation of Their Recovery Potential in Turkey.
    Sahan M; Kucuker MA; Demirel B; Kuchta K; Hursthouse A
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30862075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical pre-treatment of mobile phones and its effect on the Printed Circuit Assemblies (PCAs).
    Bachér J; Mrotzek A; Wahlström M
    Waste Manag; 2015 Nov; 45():235-45. PubMed ID: 26139137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the influence of mobile phones' material composition on the economic profitability of their manual dismantling.
    Bruno M; Sotera L; Fiore S
    J Environ Manage; 2022 May; 309():114677. PubMed ID: 35151134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling.
    Huang T; Zhu J; Huang X; Ruan J; Xu Z
    Waste Manag; 2022 Feb; 139():105-115. PubMed ID: 34959086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.
    Calgaro CO; Schlemmer DF; da Silva MD; Maziero EV; Tanabe EH; Bertuol DA
    Waste Manag; 2015 Nov; 45():289-97. PubMed ID: 26022338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and recovery of polymers from mobile phone scrap.
    Kasper AC; Bernardes AM; Veit HM
    Waste Manag Res; 2011 Jul; 29(7):714-26. PubMed ID: 21382879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards.
    Zhang ZY; Wu L; He K; Zhang FS
    Waste Manag; 2022 Nov; 153():13-19. PubMed ID: 36029533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation.
    Anshu Priya ; Hait S
    Waste Manag; 2018 May; 75():103-123. PubMed ID: 29454818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.