These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 31110004)
1. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004 [TBL] [Abstract][Full Text] [Related]
2. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. Ren P; Li J; Zhao L; Wang A; Wang M; Li J; Jian H; Li X; Yan X; Bai S ACS Appl Mater Interfaces; 2020 May; 12(19):21433-21440. PubMed ID: 32319760 [TBL] [Abstract][Full Text] [Related]
3. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. Talloj SK; Mohammed M; Lin HC J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379 [TBL] [Abstract][Full Text] [Related]
4. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
5. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Zhang H; Park J; Jiang Y; Woodrow KA Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480 [TBL] [Abstract][Full Text] [Related]
6. 3D cell growth and proliferation on a RGD functionalized nanofibrillar hydrogel based on a conformationally restricted residue containing dipeptide. Panda JJ; Dua R; Mishra A; Mittra B; Chauhan VS ACS Appl Mater Interfaces; 2010 Oct; 2(10):2839-48. PubMed ID: 20886861 [TBL] [Abstract][Full Text] [Related]
7. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Xing R; Li S; Zhang N; Shen G; Möhwald H; Yan X Biomacromolecules; 2017 Nov; 18(11):3514-3523. PubMed ID: 28721731 [TBL] [Abstract][Full Text] [Related]
8. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator. Chakraborty P; Tang Y; Yamamoto T; Yao Y; Guterman T; Zilberzwige-Tal S; Adadi N; Ji W; Dvir T; Ramamoorthy A; Wei G; Gazit E Adv Mater; 2020 Mar; 32(9):e1906043. PubMed ID: 31984580 [TBL] [Abstract][Full Text] [Related]
9. Dipeptide-polysaccharides hydrogels through co-assembly. Hu T; Xu Y; Xu G Food Chem; 2023 Oct; 422():136272. PubMed ID: 37141751 [TBL] [Abstract][Full Text] [Related]
10. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. Koutsopoulos S J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893 [TBL] [Abstract][Full Text] [Related]
11. A Rapid Self-Assembly Peptide Hydrogel for Recruitment and Activation of Immune Cells. Luo R; Wan Y; Luo X; Liu G; Li Z; Chen J; Su D; Lu N; Luo Z Molecules; 2022 Jan; 27(2):. PubMed ID: 35056735 [TBL] [Abstract][Full Text] [Related]
13. Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Fu W; Farhadi Sabet Z; Liu J; You M; Zhou H; Wang Y; Gao Y; Li J; Ma X; Chen C Nanoscale; 2020 Apr; 12(14):7960-7968. PubMed ID: 32232244 [TBL] [Abstract][Full Text] [Related]
14. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Li L; Xie L; Zheng R; Sun R Front Chem; 2021; 9():739791. PubMed ID: 34540806 [TBL] [Abstract][Full Text] [Related]
15. Fmoc-Dipeptide/Porphyrin Molar Ratio Dictates Energy Transfer Efficiency in Nanostructures Produced by Biocatalytic Co-Assembly. Wijerathne NK; Kumar M; Ulijn RV Chemistry; 2019 Sep; 25(51):11847-11851. PubMed ID: 31353639 [TBL] [Abstract][Full Text] [Related]
16. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397 [TBL] [Abstract][Full Text] [Related]
17. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207 [TBL] [Abstract][Full Text] [Related]
18. The effects of motif net charge and amphiphilicity on the self-assembly of functionally designer RADA16-I peptides. Wu D; Zhang S; Zhao Y; Ao N; Ramakrishna S; He L Biomed Mater; 2018 Mar; 13(3):035011. PubMed ID: 29546848 [TBL] [Abstract][Full Text] [Related]
19. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release. Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098 [TBL] [Abstract][Full Text] [Related]
20. Exceptionally strong hydrogels through self-assembly of an indole-capped dipeptide. Martin AD; Robinson AB; Mason AF; Wojciechowski JP; Thordarson P Chem Commun (Camb); 2014 Dec; 50(98):15541-4. PubMed ID: 25354784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]