BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31110224)

  • 1. Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Disease.
    Ait-Aissa K; Blaszak SC; Beutner G; Tsaih SW; Morgan G; Santos JH; Flister MJ; Joyce DL; Camara AKS; Gutterman DD; Donato AJ; Porter GA; Beyer AM
    Sci Rep; 2019 May; 9(1):7623. PubMed ID: 31110224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.
    Yang M; Chadwick AE; Dart C; Kamishima T; Quayle JM
    PLoS One; 2017; 12(5):e0177951. PubMed ID: 28542339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired mitochondrial oxidative phosphorylation capacity in epicardial adipose tissue is associated with decreased concentration of adiponectin and severity of coronary atherosclerosis.
    Nakajima T; Yokota T; Shingu Y; Yamada A; Iba Y; Ujihira K; Wakasa S; Ooka T; Takada S; Shirakawa R; Katayama T; Furihata T; Fukushima A; Matsuoka R; Nishihara H; Dela F; Nakanishi K; Matsui Y; Kinugawa S
    Sci Rep; 2019 Mar; 9(1):3535. PubMed ID: 30837669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.
    Fang B; Zhang M; Ge KS; Xing HZ; Ren FZ
    J Dairy Sci; 2018 Jun; 101(6):4853-4863. PubMed ID: 29550120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of orotic acid treatment on the energy and carbohydrate metabolism of the hypertrophying rat heart.
    Donohoe JA; Rosenfeldt FL; Munsch CM; Williams JF
    Int J Biochem; 1993 Feb; 25(2):163-82. PubMed ID: 8444313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic control of oxidative phosphorylation and experimental models of defects.
    Trounce I
    Hum Reprod; 2000 Jul; 15 Suppl 2():18-27. PubMed ID: 11041510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in bioenergetics due to changes in mitochondrial DNA copy number.
    Qian W; Van Houten B
    Methods; 2010 Aug; 51(4):452-7. PubMed ID: 20347038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired energy metabolism of the taurine‑deficient heart.
    Schaffer SW; Shimada-Takaura K; Jong CJ; Ito T; Takahashi K
    Amino Acids; 2016 Feb; 48(2):549-58. PubMed ID: 26475290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease.
    Nishikawa T; Bellance N; Damm A; Bing H; Zhu Z; Handa K; Yovchev MI; Sehgal V; Moss TJ; Oertel M; Ram PT; Pipinos II; Soto-Gutierrez A; Fox IJ; Nagrath D
    J Hepatol; 2014 Jun; 60(6):1203-11. PubMed ID: 24583248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():16-24. PubMed ID: 28087461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of substrate activation (hydrolysis of ATP by first steps of glycolysis and beta-oxidation) on the effect of enzyme deficiencies, inhibitors, substrate shortage and energy demand on oxidative phosphorylation.
    Korzeniewski B
    Biophys Chem; 2003 May; 104(1):107-19. PubMed ID: 12834831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.