These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31110229)

  • 1. Specific heat capacity enhancement studied in silica doped potassium nitrate via molecular dynamics simulation.
    Engelmann S; Hentschke R
    Sci Rep; 2019 May; 9(1):7606. PubMed ID: 31110229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the specific heat capacity enhancement in nanofluids.
    Hentschke R
    Nanoscale Res Lett; 2016 Dec; 11(1):88. PubMed ID: 26873263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.
    Mondragón R; Juliá JE; Cabedo L; Navarrete N
    Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage.
    Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM
    Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.
    Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM
    Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures.
    D'Aguanno B; Karthik M; Grace AN; Floris A
    Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets.
    Xie Q; Zhu Q; Li Y
    Nanoscale Res Lett; 2016 Dec; 11(1):306. PubMed ID: 27325522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
    Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE
    Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific Heat Capacity of Solar Salt-Based Nanofluids: Molecular Dynamics Simulation and Experiment.
    Abir FM; Shin D
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.
    Lasfargues M; Bell A; Ding Y
    J Nanopart Res; 2016; 18():150. PubMed ID: 27358585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Graphite-Dispersed Li
    Karim MA; Islam M; Arthur O; Yarlagadda PK
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the specific heat capacity enhancement of ternary carbonate nanofluids with SiO
    Sang L; Ai W; Liu T; Wu Y; Ma C
    RSC Adv; 2019 Feb; 9(10):5288-5294. PubMed ID: 35515947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism exploration of the enhancement of thermal energy storage in molten salt nanofluid.
    Li Z; Cui L; Li B; Du X
    Phys Chem Chem Phys; 2021 Jun; 23(23):13181-13189. PubMed ID: 34085072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermophysical properties via PAO superstructure.
    Pournorouz Z; Mostafavi A; Pinto A; Bokka A; Jeon J; Shin D
    Nanoscale Res Lett; 2017 Dec; 12(1):29. PubMed ID: 28078609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector.
    Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate.
    Tong Z; Li L; Li Y; Wang Q; Cheng X
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures.
    Lasfargues M; Geng Q; Cao H; Ding Y
    Nanomaterials (Basel); 2015 Jun; 5(3):1136-1146. PubMed ID: 28347056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel WS
    Martínez-Merino P; Midgley SD; Martín EI; Estellé P; Alcántara R; Sánchez-Coronilla A; Grau-Crespo R; Navas J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5793-5804. PubMed ID: 31942792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.