BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31110268)

  • 41. van der Waals epitaxial growth of atomically thin Bi₂Se₃ and thickness-dependent topological phase transition.
    Xu S; Han Y; Chen X; Wu Z; Wang L; Han T; Ye W; Lu H; Long G; Wu Y; Lin J; Cai Y; Ho KM; He Y; Wang N
    Nano Lett; 2015 Apr; 15(4):2645-51. PubMed ID: 25807151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials.
    Vaziri S; Yalon E; Muñoz Rojo M; Suryavanshi SV; Zhang H; McClellan CJ; Bailey CS; Smithe KKH; Gabourie AJ; Chen V; Deshmukh S; Bendersky L; Davydov AV; Pop E
    Sci Adv; 2019 Aug; 5(8):eaax1325. PubMed ID: 31453337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coherent control of thermal phonon transport in van der Waals superlattices.
    Guo R; Jho YD; Minnich AJ
    Nanoscale; 2018 Aug; 10(30):14432-14440. PubMed ID: 29808882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of the Thermal Boundary Resistance in Metal/Dielectric Thermally Conductive Layers on Power Generation of Silicon Nanowire Microthermoelectric Generators.
    Zhan T; Ma S; Jin Z; Takezawa H; Mesaki K; Tomita M; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34441-34450. PubMed ID: 32635712
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermionic transport across gold-graphene-WSe
    Rosul MG; Lee D; Olson DH; Liu N; Wang X; Hopkins PE; Lee K; Zebarjadi M
    Sci Adv; 2019 Nov; 5(11):eaax7827. PubMed ID: 31723602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.
    Lin YC; Ghosh RK; Addou R; Lu N; Eichfeld SM; Zhu H; Li MY; Peng X; Kim MJ; Li LJ; Wallace RM; Datta S; Robinson JA
    Nat Commun; 2015 Jun; 6():7311. PubMed ID: 26088295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN.
    Wang JI; Yang Y; Chen YA; Watanabe K; Taniguchi T; Churchill HO; Jarillo-Herrero P
    Nano Lett; 2015 Mar; 15(3):1898-903. PubMed ID: 25654184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative experimental study on the cross-plane thermal conductivities of nano-constructed Sb
    Yang G; Pan J; Fu X; Hu Z; Wang Y; Wu Z; Mu E; Yan XJ; Lu MH
    Nano Converg; 2018 Dec; 5(1):22. PubMed ID: 30148043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. P-type laser-doped WSe
    Chen J; Shan Y; Wang Q; Zhu J; Liu R
    Nanotechnology; 2020 May; 31(29):295201. PubMed ID: 32268302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering Thermal Transport across Layered Graphene-MoS
    Sood A; Sievers C; Shin YC; Chen V; Chen S; Smithe KKH; Chatterjee S; Donadio D; Goodson KE; Pop E
    ACS Nano; 2021 Dec; 15(12):19503-19512. PubMed ID: 34813267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2.
    Huang W; Luo X; Gan CK; Quek SY; Liang G
    Phys Chem Chem Phys; 2014 Jun; 16(22):10866-74. PubMed ID: 24760342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning a bond order potential model to study thermal transport in WSe
    Chan H; Sasikumar K; Srinivasan S; Cherukara M; Narayanan B; Sankaranarayanan SKRS
    Nanoscale; 2019 May; 11(21):10381-10392. PubMed ID: 31107489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Light-matter interactions in two-dimensional layered WSe
    Bandyopadhyay AS; Biswas C; Kaul AB
    Beilstein J Nanotechnol; 2020; 11():782-797. PubMed ID: 32509492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.
    Zhang X; Qiao XF; Shi W; Wu JB; Jiang DS; Tan PH
    Chem Soc Rev; 2015 May; 44(9):2757-85. PubMed ID: 25679474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental and Computational Investigation of Layer-Dependent Thermal Conductivities and Interfacial Thermal Conductance of One- to Three-Layer WSe
    Easy E; Gao Y; Wang Y; Yan D; Goushehgir SM; Yang EH; Xu B; Zhang X
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13063-13071. PubMed ID: 33720683
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production.
    Yu X; Prévot MS; Guijarro N; Sivula K
    Nat Commun; 2015 Jul; 6():7596. PubMed ID: 26126745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.
    Zhang Y; Ugeda MM; Jin C; Shi SF; Bradley AJ; Martín-Recio A; Ryu H; Kim J; Tang S; Kim Y; Zhou B; Hwang C; Chen Y; Wang F; Crommie MF; Hussain Z; Shen ZX; Mo SK
    Nano Lett; 2016 Apr; 16(4):2485-91. PubMed ID: 26974978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced Thermal Boundary Conductance in Few-Layer Ti
    Yasaei P; Hemmat Z; Foss CJ; Li SJ; Hong L; Behranginia A; Majidi L; Klie RF; Barsoum MW; Aksamija Z; Salehi-Khojin A
    Adv Mater; 2018 Oct; 30(43):e1801629. PubMed ID: 30252179
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.