These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31110472)
1. Use of Overlapping Group LASSO Sparse Deep Belief Network to Discriminate Parkinson's Disease and Normal Control. Shen T; Jiang J; Lin W; Ge J; Wu P; Zhou Y; Zuo C; Wang J; Yan Z; Shi K Front Neurosci; 2019; 13():396. PubMed ID: 31110472 [TBL] [Abstract][Full Text] [Related]
2. Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls. Wu Y; Jiang JH; Chen L; Lu JY; Ge JJ; Liu FT; Yu JT; Lin W; Zuo CT; Wang J Ann Transl Med; 2019 Dec; 7(23):773. PubMed ID: 32042789 [TBL] [Abstract][Full Text] [Related]
3. Use of a Sparse-Response Deep Belief Network and Extreme Learning Machine to Discriminate Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls Based on Amyloid PET/MRI Images. Zhou P; Jiang S; Yu L; Feng Y; Chen C; Li F; Liu Y; Huang Z Front Med (Lausanne); 2020; 7():621204. PubMed ID: 33537334 [TBL] [Abstract][Full Text] [Related]
4. Use of deep learning-based radiomics to differentiate Parkinson's disease patients from normal controls: a study based on [ Sun X; Ge J; Li L; Zhang Q; Lin W; Chen Y; Wu P; Yang L; Zuo C; Jiang J Eur Radiol; 2022 Nov; 32(11):8008-8018. PubMed ID: 35674825 [TBL] [Abstract][Full Text] [Related]
5. Predicting Alzheimer Disease From Mild Cognitive Impairment With a Deep Belief Network Based on 18F-FDG-PET Images. Shen T; Jiang J; Lu J; Wang M; Zuo C; Yu Z; Yan Z Mol Imaging; 2019; 18():1536012119877285. PubMed ID: 31552787 [TBL] [Abstract][Full Text] [Related]
6. The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson's disease. Tomše P; Jensterle L; Rep S; Grmek M; Zaletel K; Eidelberg D; Dhawan V; Ma Y; Trošt M Phys Med; 2017 Sep; 41():129-135. PubMed ID: 28188080 [TBL] [Abstract][Full Text] [Related]
8. Early diagnosis of Parkinson's disease: A combined method using deep learning and neuro-fuzzy techniques. Nilashi M; Abumalloh RA; Yusuf SYM; Thi HH; Alsulami M; Abosaq H; Alyami S; Alghamdi A Comput Biol Chem; 2023 Feb; 102():107788. PubMed ID: 36410240 [TBL] [Abstract][Full Text] [Related]
9. A sparse deep belief network with efficient fuzzy learning framework. Wang G; Jia QS; Qiao J; Bi J; Liu C Neural Netw; 2020 Jan; 121():430-440. PubMed ID: 31610414 [TBL] [Abstract][Full Text] [Related]
10. [Computer-aided diagnosis of Parkinson's disease based on the stacked deep polynomial networks ensemble learning framework]. Chen L; Shi J; Peng B; Dai Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Dec; 35(6):928-934. PubMed ID: 30583319 [TBL] [Abstract][Full Text] [Related]
11. Joint feature-sample selection and robust diagnosis of Parkinson's disease from MRI data. Adeli E; Shi F; An L; Wee CY; Wu G; Wang T; Shen D Neuroimage; 2016 Nov; 141():206-219. PubMed ID: 27296013 [TBL] [Abstract][Full Text] [Related]
12. Abnormal metabolic brain network associated with Parkinson's disease: replication on a new European sample. Tomše P; Jensterle L; Grmek M; Zaletel K; Pirtošek Z; Dhawan V; Peng S; Eidelberg D; Ma Y; Trošt M Neuroradiology; 2017 May; 59(5):507-515. PubMed ID: 28386687 [TBL] [Abstract][Full Text] [Related]
13. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine. Liang Z; Liu J; Ou A; Zhang H; Li Z; Huang JX Comput Methods Programs Biomed; 2019 Jun; 174():17-23. PubMed ID: 29801696 [TBL] [Abstract][Full Text] [Related]
14. The effects of image reconstruction algorithms on topographic characteristics, diagnostic performance and clinical correlation of metabolic brain networks in Parkinson's disease. Tomše P; Peng S; Pirtošek Z; Zaletel K; Dhawan V; Eidelberg D; Ma Y; Trošt M Phys Med; 2018 Aug; 52():104-112. PubMed ID: 30139598 [TBL] [Abstract][Full Text] [Related]
15. A deep learning approach for prediction of Parkinson's disease progression. Shahid AH; Singh MP Biomed Eng Lett; 2020 May; 10(2):227-239. PubMed ID: 32477610 [TBL] [Abstract][Full Text] [Related]
16. A deep belief network with PLSR for nonlinear system modeling. Qiao J; Wang G; Li W; Li X Neural Netw; 2018 Aug; 104():68-79. PubMed ID: 29729561 [TBL] [Abstract][Full Text] [Related]
17. Multi disease-prediction framework using hybrid deep learning: an optimal prediction model. Ampavathi A; Saradhi TV Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1146-1168. PubMed ID: 33427480 [TBL] [Abstract][Full Text] [Related]
18. Applying TS-DBN model into sports behavior recognition with deep learning approach. Guo Y; Wang X J Supercomput; 2021; 77(10):12192-12208. PubMed ID: 33840896 [TBL] [Abstract][Full Text] [Related]
19. An Adaptive Deep Belief Network With Sparse Restricted Boltzmann Machines. Wang G; Qiao J; Bi J; Jia QS; Zhou M IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4217-4228. PubMed ID: 31880561 [TBL] [Abstract][Full Text] [Related]
20. Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset. Li Y; Sun C; Li P; Zhao Y; Mensah GK; Xu Y; Guo H; Chen J Front Neurosci; 2020; 14():60. PubMed ID: 32116508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]