These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31110515)

  • 1. Longitudinal Analysis of Stroke Patients' Brain Rhythms during an Intervention with a Brain-Computer Interface.
    Carino-Escobar RI; Carrillo-Mora P; Valdés-Cristerna R; Rodriguez-Barragan MA; Hernandez-Arenas C; Quinzaños-Fresnedo J; Galicia-Alvarado MA; Cantillo-Negrete J
    Neural Plast; 2019; 2019():7084618. PubMed ID: 31110515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients.
    Ma ZZ; Wu JJ; Cao Z; Hua XY; Zheng MX; Xing XX; Ma J; Xu JG
    J Neuroeng Rehabil; 2024 May; 21(1):91. PubMed ID: 38812014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study.
    Prasad G; Herman P; Coyle D; McDonough S; Crosbie J
    J Neuroeng Rehabil; 2010 Dec; 7():60. PubMed ID: 21156054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
    Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C
    Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review.
    Qu H; Zeng F; Tang Y; Shi B; Wang Z; Chen X; Wang J
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):30-41. PubMed ID: 35450498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling Transformative Effects after tDCS and BCI Intervention in Chronic Post-Stroke Patient Rehabilitation-An Alternative Treatment Design Study.
    Lima JPS; Silva LA; Delisle-Rodriguez D; Cardoso VF; Nakamura-Palacios EM; Bastos-Filho TF
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain oscillatory activity as a biomarker of motor recovery in chronic stroke.
    Ray AM; Figueiredo TDC; López-Larraz E; Birbaumer N; Ramos-Murguialday A
    Hum Brain Mapp; 2020 Apr; 41(5):1296-1308. PubMed ID: 31778265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hebbian plasticity induced by temporally coincident BCI enhances post-stroke motor recovery.
    Krueger J; Krauth R; Reichert C; Perdikis S; Vogt S; Huchtemann T; Dürschmid S; Sickert A; Lamprecht J; Huremovic A; Görtler M; Nasuto SJ; Tsai IC; Knight RT; Hinrichs H; Heinze HJ; Lindquist S; Sailer M; Millán JDR; Sweeney-Reed CM
    Sci Rep; 2024 Aug; 14(1):18700. PubMed ID: 39134592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is motor-imagery brain-computer interface feasible in stroke rehabilitation?
    Teo WP; Chew E
    PM R; 2014 Aug; 6(8):723-8. PubMed ID: 24429072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients.
    Li C; Jia T; Xu Q; Ji L; Pan Y
    J Healthc Eng; 2019; 2019():3817124. PubMed ID: 31559004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCI-Based Rehabilitation on the Stroke in Sequela Stage.
    Miao Y; Chen S; Zhang X; Jin J; Xu R; Daly I; Jia J; Wang X; Cichocki A; Jung TP
    Neural Plast; 2020; 2020():8882764. PubMed ID: 33414824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation Between Sensorimotor Rhythm During Motor Attempt/Imagery and Upper-Limb Motor Impairment in Stroke.
    Chen S; Shu X; Jia J; Wang H; Ding L; He Z; Brauer S; Zhu X
    Clin EEG Neurosci; 2022 May; 53(3):238-247. PubMed ID: 34028306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training.
    Li M; Liu Y; Wu Y; Liu S; Jia J; Zhang L
    Int J Neurosci; 2014 Jun; 124(6):403-15. PubMed ID: 24079396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DiSCIoser: unlocking recovery potential of arm sensorimotor functions after spinal cord injury by promoting activity-dependent brain plasticity by means of brain-computer interface technology: a randomized controlled trial to test efficacy.
    Colamarino E; Lorusso M; Pichiorri F; Toppi J; Tamburella F; Serratore G; Riccio A; Tomaiuolo F; Bigioni A; Giove F; Scivoletto G; Cincotti F; Mattia D
    BMC Neurol; 2023 Nov; 23(1):414. PubMed ID: 37990160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke.
    Várkuti B; Guan C; Pan Y; Phua KS; Ang KK; Kuah CW; Chua K; Ang BT; Birbaumer N; Sitaram R
    Neurorehabil Neural Repair; 2013 Jan; 27(1):53-62. PubMed ID: 22645108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement-Related EEG Oscillations of Contralesional Hemisphere Discloses Compensation Mechanisms of Severely Affected Motor Chronic Stroke Patients.
    Barios JA; Ezquerro S; Bertomeu-Motos A; Catalan JM; Sanchez-Aparicio JM; Donis-Barber L; Fernandez E; Garcia-Aracil N
    Int J Neural Syst; 2021 Dec; 31(12):2150053. PubMed ID: 34719347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the Efficacy of EEG-Based MI-BCI With Visual Feedback and EEG Correlates of Mental Fatigue for Upper-Limb Stroke Rehabilitation.
    Foong R; Ang KK; Quek C; Guan C; Phua KS; Kuah CWK; Deshmukh VA; Yam LHL; Rajeswaran DK; Tang N; Chew E; Chua KSG
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):786-795. PubMed ID: 31180829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis.
    Kruse A; Suica Z; Taeymans J; Schuster-Amft C
    BMC Neurol; 2020 Oct; 20(1):385. PubMed ID: 33092554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.