These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31110927)

  • 21. RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes.
    Mattison CP; Rai R; Settlage RE; Hinchliffe DJ; Madison C; Bland JM; Brashear S; Graham CJ; Tarver MR; Florane C; Bechtel PJ
    J Agric Food Chem; 2017 Feb; 65(7):1443-1455. PubMed ID: 28121438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental specific expression and organelle targeting of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase in transgenic rape and tobacco seeds.
    Verwoert II; van der Linden KH; Nijkamp HJ; Stuitje AR
    Plant Mol Biol; 1994 Oct; 26(1):189-202. PubMed ID: 7948869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis reveals the molecular mechanism of hepatic fat metabolism disorder caused by Muscovy duck reovirus infection.
    Wang Q; Liu M; Xu L; Wu Y; Huang Y
    Avian Pathol; 2018 Apr; 47(2):127-139. PubMed ID: 28911249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.
    Xu Z; Ni J; Shah FA; Wang Q; Wang Z; Wu L; Fu S
    PLoS One; 2018; 13(4):e0195913. PubMed ID: 29694395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism.
    Xie D; Dai Z; Yang Z; Tang Q; Deng C; Xu Y; Wang J; Chen J; Zhao D; Zhang S; Zhang S; Su J
    Plant Sci; 2019 Sep; 286():98-107. PubMed ID: 31300147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds.
    Abdullah HM; Akbari P; Paulose B; Schnell D; Qi W; Park Y; Pareek A; Dhankher OP
    Biotechnol Biofuels; 2016; 9():136. PubMed ID: 27382413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Full-Length Transcriptome Survey and Expression Analysis of
    Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.
    Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB
    Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis.
    Kim HU; Chen GQ
    BMC Genomics; 2015 Mar; 16(1):230. PubMed ID: 25881190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome Analysis and GC-MS Profiling of Key Fatty Acid Biosynthesis Genes in
    Zhong Y; Zhao Y; Wang Y; Niu J; Sun Z; Chen J; Luan M
    Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741376
    [No Abstract]   [Full Text] [Related]  

  • 34. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).
    Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W
    Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.
    Suh MC; Schultz DJ; Ohlrogge JB
    Plant J; 1999 Mar; 17(6):679-88. PubMed ID: 10366274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene.
    Du H; Huang M; Hu J; Li J
    BMC Plant Biol; 2016 Jun; 16(1):137. PubMed ID: 27297560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic and Metabolomic Analysis Unravels the Molecular Regulatory Mechanism of Fatty Acid Biosynthesis in
    Chen C; Chen H; Han C; Liu Z; Ni M; Wu Q; Yu F
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of transcriptomic and proteomic approaches helps to unravel the protein composition of Chelidonium majus L. milky sap.
    Nawrot R; Barylski J; Lippmann R; Altschmied L; Mock HP
    Planta; 2016 Nov; 244(5):1055-1064. PubMed ID: 27401454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical metabolic pathways and genes cooperate for epoxy fatty acid-enriched oil production in developing seeds of Vernonia galamensis, an industrial oleaginous plant.
    Sun Y; Liu B; Xue J; Wang X; Cui H; Li R; Jia X
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):21. PubMed ID: 35216635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mining and identification of polyunsaturated fatty acid synthesis genes active during camelina seed development using 454 pyrosequencing.
    Wang F; Chen H; Li X; Wang N; Wang T; Yang J; Guan L; Yao N; Du L; Wang Y; Liu X; Chen X; Wang Z; Dong Y; Li H
    BMC Plant Biol; 2015 Jun; 15():147. PubMed ID: 26084534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.