These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 31110951)
1. Experimental study of crack behavior in pressurized high-density polyethylene water pipes. Sadr-Al-Sadati SA; Jalili Ghazizadeh M MethodsX; 2019; 6():1009-1020. PubMed ID: 31110951 [TBL] [Abstract][Full Text] [Related]
2. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes. Mao F; Ong SK; Gaunt JA J Water Health; 2015 Sep; 13(3):758-72. PubMed ID: 26322761 [TBL] [Abstract][Full Text] [Related]
3. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water. Skjevrak I; Due A; Gjerstad KO; Herikstad H Water Res; 2003 Apr; 37(8):1912-20. PubMed ID: 12697234 [TBL] [Abstract][Full Text] [Related]
4. Investigating the Deformation Characteristics of Buried High-Density Polyethylene Pipes: Considering the Effect of Sequentially Applying Pressure and Elevating Temperature. Zhang Y; Shi J; Liu Z; Sun Z; Wu X Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145922 [TBL] [Abstract][Full Text] [Related]
5. Estimation of leak area-pressure relationship for cracks on water pipes using models based on linear-elastic fracture mechanics. Li Y; Gao J; Shen C; Guan Y; Wang W Water Res; 2022 Aug; 221():118692. PubMed ID: 35777318 [TBL] [Abstract][Full Text] [Related]
6. Guided Wave Ultrasonic Testing for Crack Detection in Polyethylene Pipes: Laboratory Experiments and Numerical Modeling. Shah J; El-Hawwat S; Wang H Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299858 [TBL] [Abstract][Full Text] [Related]
7. A non-target screening study of high-density polyethylene pipes revealed rubber compounds as main contaminant in a drinking water distribution system. Diera T; Thomsen AH; Tisler S; Karlby LT; Christensen P; Rosshaug PS; Albrechtsen HJ; Christensen JH Water Res; 2023 Feb; 229():119480. PubMed ID: 36528929 [TBL] [Abstract][Full Text] [Related]
8. Different senescent HDPE pipe-risk: brief field investigation from source water to tap water in China (Changsha City). Tang J; Tang L; Zhang C; Zeng G; Deng Y; Dong H; Wang J; Wu Y Environ Sci Pollut Res Int; 2015 Oct; 22(20):16210-4. PubMed ID: 26308926 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the Residual Stress and Its Effect on the Quasi-Static Stress in Polyethylene Pipes. Tan N; Lin L; Deng T; Dong Y Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406331 [TBL] [Abstract][Full Text] [Related]
10. Effects of water chemistry and flow on lead release from plastic pipes versus copper pipes, implications for plumbing decontamination. Ghoochani S; Hadiuzzaman M; Mirza N; Brown SP; Salehi M Environ Pollut; 2023 Nov; 337():122520. PubMed ID: 37678732 [TBL] [Abstract][Full Text] [Related]
11. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe. Heim TH; Dietrich AM Water Res; 2007 Feb; 41(4):757-64. PubMed ID: 17223157 [TBL] [Abstract][Full Text] [Related]
12. Experimental Investigations of Distributed Fiber Optic Sensors for Water Pipeline Monitoring. Bertulessi M; Bignami DF; Boschini I; Longoni M; Menduni G; Morosi J Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448054 [TBL] [Abstract][Full Text] [Related]
13. Lead (Pb) deposition onto new and biofilm-laden potable water pipes. Hadiuzzaman M; Mirza N; Brown SP; Ladner DA; Salehi M Chemosphere; 2023 Nov; 342():140135. PubMed ID: 37690561 [TBL] [Abstract][Full Text] [Related]
14. Chlorine Dioxide Degradation Issues on Metal and Plastic Water Pipes Tested in Parallel in a Semi-Closed System. Vertova A; Miani A; Lesma G; Rondinini S; Minguzzi A; Falciola L; Ortenzi MA Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752399 [TBL] [Abstract][Full Text] [Related]
15. Comparative Study of Leak Detection in PVC Water Pipes Using Ceramic, Polymer, and Surface Acoustic Wave Sensors. Hamamed N; Mechri C; Mhammedi T; Yaakoubi N; El Guerjouma R; Bouaziz S; Haddar M Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765774 [TBL] [Abstract][Full Text] [Related]
16. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth. Men YF; Rieger J; Enderle HF; Lilge D Eur Phys J E Soft Matter; 2004 Dec; 15(4):421-5. PubMed ID: 15583973 [TBL] [Abstract][Full Text] [Related]
17. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature. Liu ZH; Yin H; Dang Z Environ Sci Pollut Res Int; 2017 Jan; 24(2):2126-2134. PubMed ID: 27830418 [TBL] [Abstract][Full Text] [Related]
18. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners. Zhang L; Liu S; Liu W Environ Sci Process Impacts; 2014 Feb; 16(2):280-90. PubMed ID: 24352374 [TBL] [Abstract][Full Text] [Related]
19. Finite Element Plastic Limit Loads of Complex Cracks in Pipes With Two-Layered Materials. Jeon DS; Huh NS; Shim DJ; Lee SM J Press Vessel Technol; 2019 Apr; 141(2):0212011-2120110. PubMed ID: 33437103 [TBL] [Abstract][Full Text] [Related]
20. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Lehtola MJ; Miettinen IT; Lampola T; Hirvonen A; Vartiainen T; Martikainen PJ Water Res; 2005 May; 39(10):1962-71. PubMed ID: 15869778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]