These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31111152)

  • 1. The Molecular Clock in the Evolution of Protein Structures.
    Pascual-García A; Arenas M; Bastolla U
    Syst Biol; 2019 Nov; 68(6):987-1002. PubMed ID: 31111152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation.
    Pascual-García A; Abia D; Méndez R; Nido GS; Bastolla U
    Proteins; 2010 Jan; 78(1):181-96. PubMed ID: 19830831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of substitutions and indels to the structural variations in ancient protein superfamilies.
    Zhang Z; Wang J; Gong Y; Li Y
    BMC Genomics; 2018 Oct; 19(1):771. PubMed ID: 30355304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection on protein structure, interaction, and sequence.
    Chi PB; Liberles DA
    Protein Sci; 2016 Jul; 25(7):1168-78. PubMed ID: 26808055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the impact of protein tertiary structure on molecular evolution.
    Choi SC; Hobolth A; Robinson DM; Kishino H; Thorne JL
    Mol Biol Evol; 2007 Aug; 24(8):1769-82. PubMed ID: 17522088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular clock in neutral protein evolution.
    Wilke CO
    BMC Genet; 2004 Aug; 5():25. PubMed ID: 15333142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of neutral protein evolution.
    Bloom JD; Raval A; Wilke CO
    Genetics; 2007 Jan; 175(1):255-66. PubMed ID: 17110496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical origins of protein superfamilies.
    Zeldovich KB; Berezovsky IN; Shakhnovich EI
    J Mol Biol; 2006 Apr; 357(4):1335-43. PubMed ID: 16483605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProtASR: An Evolutionary Framework for Ancestral Protein Reconstruction with Selection on Folding Stability.
    Arenas M; Weber CC; Liberles DA; Bastolla U
    Syst Biol; 2017 Nov; 66(6):1054-1064. PubMed ID: 28057858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein evolution with dependence among codons due to tertiary structure.
    Robinson DM; Jones DT; Kishino H; Goldman N; Thorne JL
    Mol Biol Evol; 2003 Oct; 20(10):1692-704. PubMed ID: 12885968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness.
    Noirel J; Simonson T
    J Chem Phys; 2008 Nov; 129(18):185104. PubMed ID: 19045432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating protein evolution in sequence and structure space.
    Xia Y; Levitt M
    Curr Opin Struct Biol; 2004 Apr; 14(2):202-7. PubMed ID: 15093835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new parameter-rich structure-aware mechanistic model for amino acid substitution during evolution.
    Chi PB; Kim D; Lai JK; Bykova N; Weber CC; Kubelka J; Liberles DA
    Proteins; 2018 Feb; 86(2):218-228. PubMed ID: 29178386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.
    Wolf MY; Wolf YI; Koonin EV
    Biol Direct; 2008 Oct; 3():40. PubMed ID: 18840284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats.
    Mularoni L; Veitia RA; Albà MM
    Genomics; 2007 Mar; 89(3):316-25. PubMed ID: 17196365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of duplicated genes considering protein stability constraints.
    Taverna DM; Goldstein RM
    Pac Symp Biocomput; 2000; ():69-80. PubMed ID: 10902157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotachy and functional shift in protein evolution.
    Philippe H; Casane D; Gribaldo S; Lopez P; Meunier J
    IUBMB Life; 2003; 55(4-5):257-65. PubMed ID: 12880207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.