These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31111389)

  • 1. Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures.
    Bakhshi N; Sarrafi A; Ramezanianpour AA
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20829-20838. PubMed ID: 31111389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.
    Sinyoung S; Songsiriritthigul P; Asavapisit S; Kajitvichyanukul P
    J Hazard Mater; 2011 Jul; 191(1-3):296-305. PubMed ID: 21592657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Chromium Waste by Solidification into Cement Composites.
    Belebchouche C; Bensebti SE; Ould-Said C; Moussaceb K; Czarnecki S; Sadowski L
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Cr(VI) Leaching from Cement and Cement Composites.
    Estokova A; Palascakova L; Kanuchova M
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29690550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization/solidification on chromium (III) wastes by C(3)A and C(3)A hydrated matrix.
    Li X; He C; Bai Y; Ma B; Wang G; Tan H
    J Hazard Mater; 2014 Mar; 268():61-7. PubMed ID: 24468527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices.
    Shi HS; Kan LL
    J Hazard Mater; 2009 Mar; 162(2-3):913-9. PubMed ID: 18602213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Alkali on Water Soluble Hexavalent Chromium in Ordinary Portland Cement.
    Shi F; Jiang D; Ji J; Yan J; Chen H
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization in cement mortar of chromium removed from water using titania nanoparticles.
    Husnain A; Qazi IA; Khaliq W; Arshad M
    J Environ Manage; 2016 May; 172():10-7. PubMed ID: 26915979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.
    Jagupilla SC; Wazne M; Moon DH
    Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching behavior of pollutants in ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland cement.
    Bulut U; Ozverdi A; Erdem M
    J Hazard Mater; 2009 Mar; 162(2-3):893-8. PubMed ID: 18620810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.
    Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D
    Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sintering atmosphere on cement clinkers produced from chromium-bearing sludge.
    Chen YL; Chang JE; Lai YC; Ko MS
    J Air Waste Manag Assoc; 2012 May; 62(5):587-93. PubMed ID: 22696808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders.
    Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X
    Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of Cr-rich tannery waste in fly ash matrices.
    Daniil A; Dimitrakopulos GP; Varitis S; Vourlias G; Kaimakamis G; Pantazopoulou E; Pavlidou E; Zouboulis AI; Karakostas T; Komninou P
    Waste Manag Res; 2018 Sep; 36(9):818-826. PubMed ID: 29852818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of waste addition points on the chromium leachability of cement produced by co-processing of tannery sludge.
    Shen D; Huang M; Feng H; Li N; Zhou Y; Long Y
    Waste Manag; 2017 Mar; 61():345-353. PubMed ID: 28190680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of EAF dust in cement composites: assessment of environmental impact.
    Sturm T; Milacic R; Murko S; Vahcic M; Mladenovic A; Suput JS; Scancar J
    J Hazard Mater; 2009 Jul; 166(1):277-83. PubMed ID: 19097693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments.
    Cao X; Dermatas D; Xu X; Shen G
    Environ Sci Pollut Res Int; 2008 Mar; 15(2):120-7. PubMed ID: 18380230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatability of chromite ore processing waste by leaching.
    Unlü K; Haskök S
    Waste Manag Res; 2001 Jun; 19(3):217-28. PubMed ID: 11699856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical stabilization of chromate in blast furnace slag mixed cementitious materials.
    Meena AH; Kaplan DI; Powell BA; Arai Y
    Chemosphere; 2015 Nov; 138():247-52. PubMed ID: 26086810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of soil organic matter on leaching of hexavalent chromium from concrete waste: Batch and column experiments.
    Eckbo C; Okkenhaug G; Hale SE
    J Environ Manage; 2022 May; 309():114708. PubMed ID: 35180438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.