These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31111449)

  • 1. A new method to recommend left ventricular lead positions for improved CRT volumetric response and long-term prognosis.
    Zhang X; Qian Z; Tang H; Hua W; Su Y; Xu G; Liu X; Xue X; Fan J; Cai L; Zhu L; Wang Y; Hou X; Garcia EV; Zhou W; Zou J
    J Nucl Cardiol; 2021 Apr; 28(2):672-684. PubMed ID: 31111449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of an automatic method to detect the latest contracting viable left ventricular segments to assist guide CRT therapy from gated SPECT myocardial perfusion imaging.
    Zhou W; Tao N; Hou X; Wang Y; Folks RD; Cooke DC; Moncayo VM; Garcia EV; Zou J
    J Nucl Cardiol; 2018 Dec; 25(6):1948-1957. PubMed ID: 28353213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Left ventricular systolic and diastolic dyssynchrony to improve cardiac resynchronization therapy response in heart failure patients with dilated cardiomyopathy.
    Wang C; Shi J; Ge J; Tang H; He Z; Liu Y; Zhao Z; Li C; Gu K; Hou X; Chen M; Zou J; Zhou L; Garcia EV; Li D; Zhou W
    J Nucl Cardiol; 2021 Jun; 28(3):1023-1036. PubMed ID: 32405991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longer inter-lead electrical delay is associated with response to cardiac resynchronization therapy in patients with presumed optimal left ventricular lead position.
    Sommer A; Kronborg MB; Nørgaard BL; Stephansen C; Poulsen SH; Kristensen J; Gerdes C; Nielsen JC
    Europace; 2018 Oct; 20(10):1630-1637. PubMed ID: 29377984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac Resynchronization Therapy for Improving Non-Uniform Thickening of Left Ventricular Wall: Assessment by Quantitative Gated Myocardial Perfusion SPECT.
    Wakayama Y; Nakano M; Fukuda K; Kumagai K; Sugai Y; Hirose M; Yamaguchi N; Kondo M; Kaneta T; Fukuda H; Kagaya Y; Shimokawa H
    Tohoku J Exp Med; 2020 Jun; 251(2):69-79. PubMed ID: 32493869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical contraction to guide CRT left-ventricular lead placement instead of electrical activation in myocardial infarction with left ventricular dysfunction: An experimental study based on non-invasive gated myocardial perfusion imaging and invasive electroanatomic mapping.
    Wang J; Wang Y; Yang M; Shao S; Tian Y; Shao X; Fan S; Zhang F; Yang W; Xin W; Tang H; Xu M; Yang L; Wang X; Zhou W
    J Nucl Cardiol; 2020 Apr; 27(2):419-430. PubMed ID: 30972718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognostic benefit of optimum left ventricular lead position in cardiac resynchronization therapy: follow-up of the TARGET Study Cohort (Targeted Left Ventricular Lead Placement to guide Cardiac Resynchronization Therapy).
    Kydd AC; Khan FZ; Watson WD; Pugh PJ; Virdee MS; Dutka DP
    JACC Heart Fail; 2014 Jun; 2(3):205-12. PubMed ID: 24952685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value of intraventricular dyssynchrony assessment by gated-SPECT myocardial perfusion imaging in the management of heart failure patients undergoing cardiac resynchronization therapy (VISION-CRT).
    Peix A; Karthikeyan G; Massardo T; Kalaivani M; Patel C; Pabon LM; Jiménez-Heffernan A; Alexanderson E; Butt S; Kumar A; Marin V; Mesquita CT; Morozova O; Paez D; Garcia EV
    J Nucl Cardiol; 2021 Feb; 28(1):55-64. PubMed ID: 30684258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D fusion of LV venous anatomy on fluoroscopy venograms with epicardial surface on SPECT myocardial perfusion images for guiding CRT LV lead placement.
    Zhou W; Hou X; Piccinelli M; Tang X; Tang L; Cao K; Garcia EV; Zou J; Chen J
    JACC Cardiovasc Imaging; 2014 Dec; 7(12):1239-48. PubMed ID: 25440593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial.
    Sommer A; Kronborg MB; Nørgaard BL; Poulsen SH; Bouchelouche K; Böttcher M; Jensen HK; Jensen JM; Kristensen J; Gerdes C; Mortensen PT; Nielsen JC
    Eur J Heart Fail; 2016 Nov; 18(11):1365-1374. PubMed ID: 27087019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of ventricular septal hypoperfusion by cardiac resynchronization therapy in patients with permanent right ventricular pacing.
    Ogano M; Iwasaki YK; Tanabe J; Takagi H; Umemoto T; Hayashi M; Miyauchi Y; Shimizu W
    Int J Cardiol; 2016 Dec; 224():353-359. PubMed ID: 27673691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of right-ventricular apical pacing on the optimal left-ventricular lead positions measured by phase analysis of SPECT myocardial perfusion imaging.
    Hung GU; Huang JL; Lin WY; Tsai SC; Wang KY; Chen SA; Lloyd MS; Chen J
    Eur J Nucl Med Mol Imaging; 2014 Jun; 41(6):1224-31. PubMed ID: 24577949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT.
    Boogers MJ; Chen J; van Bommel RJ; Borleffs CJ; Dibbets-Schneider P; van der Hiel B; Al Younis I; Schalij MJ; van der Wall EE; Garcia EV; Bax JJ
    Eur J Nucl Med Mol Imaging; 2011 Feb; 38(2):230-8. PubMed ID: 20953608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial.
    Khan FZ; Virdee MS; Palmer CR; Pugh PJ; O'Halloran D; Elsik M; Read PA; Begley D; Fynn SP; Dutka DP
    J Am Coll Cardiol; 2012 Apr; 59(17):1509-18. PubMed ID: 22405632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left ventricular regional remodeling and lead position during cardiac resynchronization therapy.
    Kronborg MB; Sommer A; Fyenbo DB; Norgaard BL; Gerdes C; Jensen JM; Jensen HK; Kristensen J; Nielsen JC
    Heart Rhythm; 2018 Oct; 15(10):1542-1549. PubMed ID: 29678780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of basal inferolateral scar burden determined by automatic analysis of 99mTc-MIBI myocardial perfusion SPECT on the long-term prognosis of cardiac resynchronization therapy.
    Morishima I; Okumura K; Tsuboi H; Morita Y; Takagi K; Yoshida R; Nagai H; Tomomatsu T; Ikai Y; Terada K; Sone T; Murohara T
    Europace; 2017 Apr; 19(4):573-580. PubMed ID: 28431062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel algorithm for quantitative assessment of left ventricular dyssynchrony with ECG-gated myocardial perfusion SPECT: useful technique for management of cardiac resynchronization therapy.
    Kiso K; Imoto A; Nishimura Y; Kanzaki H; Noda T; Kamakura S; Ishida Y
    Ann Nucl Med; 2011 Dec; 25(10):768-76. PubMed ID: 21842170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive values of left ventricular mechanical dyssynchrony for CRT response in heart failure patients with different pathophysiology.
    He Z; Li D; Cui C; Qin HY; Zhao Z; Hou X; Zou J; Chen ML; Wang C; Zhou W
    J Nucl Cardiol; 2022 Oct; 29(5):2637-2648. PubMed ID: 34535872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy.
    Boogers MM; Van Kriekinge SD; Henneman MM; Ypenburg C; Van Bommel RJ; Boersma E; Dibbets-Schneider P; Stokkel MP; Schalij MJ; Berman DS; Germano G; Bax JJ
    J Nucl Med; 2009 May; 50(5):718-25. PubMed ID: 19403876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merits of Different Ventricular Lead Locations on Left Ventricular Myocardial Strain and Dyssynchrony in Patients with Cardiac Resynchronization Therapy.
    Algazzar AS; Elbably MM; Katta AA; Elmeligy N; Elrabbat K; Qutub MA
    Cardiology; 2020; 145(1):13-20. PubMed ID: 31778999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.