These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 31111528)
1. Identifying the reactive metabolites of tyrosine kinase inhibitors in a comprehensive approach: Implications for drug-drug interactions and hepatotoxicity. Paludetto MN; Puisset F; Chatelut E; Arellano C Med Res Rev; 2019 Nov; 39(6):2105-2152. PubMed ID: 31111528 [TBL] [Abstract][Full Text] [Related]
2. Involvement of Pazopanib and Sunitinib Aldehyde Reactive Metabolites in Toxicity and Drug-Drug Interactions Paludetto MN; Stigliani JL; Robert A; Bernardes-Génisson V; Chatelut E; Puisset F; Arellano C Chem Res Toxicol; 2020 Jan; 33(1):181-190. PubMed ID: 31535851 [TBL] [Abstract][Full Text] [Related]
3. Mechanism-based inhibition of CYP450: an indicator of drug-induced hepatotoxicity. Feng S; He X Curr Drug Metab; 2013 Nov; 14(9):921-45. PubMed ID: 24016115 [TBL] [Abstract][Full Text] [Related]
4. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Stepan AF; Walker DP; Bauman J; Price DA; Baillie TA; Kalgutkar AS; Aleo MD Chem Res Toxicol; 2011 Sep; 24(9):1345-410. PubMed ID: 21702456 [TBL] [Abstract][Full Text] [Related]
5. Formation of reactive metabolites and management of tyrosine kinase inhibitor-induced hepatotoxicity: a literature review. Teo YL; Ho HK; Chan A Expert Opin Drug Metab Toxicol; 2015 Feb; 11(2):231-42. PubMed ID: 25400226 [TBL] [Abstract][Full Text] [Related]
6. Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Tang LWT; Chan ECY Biochem Pharmacol; 2022 Dec; 206():115336. PubMed ID: 36332675 [TBL] [Abstract][Full Text] [Related]
7. [Hepatotoxicity of tyrosine kinase inhibitors: Mechanisms involved and practical implications]. Béchade D; Chakiba C; Desjardin M; Bécouarn Y; Fonck M Bull Cancer; 2018 Mar; 105(3):290-298. PubMed ID: 29471963 [TBL] [Abstract][Full Text] [Related]
8. Species-specific Bioactivation of Morpholines as a Causative of Drug Induced Liver Injury Observed in Monkeys. Gunduz M; Argikar UA; Cirello AL; Brown AP; Bonazzi S; Walles M Drug Metab Bioanal Lett; 2024; 17(1):13-22. PubMed ID: 38047363 [TBL] [Abstract][Full Text] [Related]
9. Metabolic bioactivation of antidepressants: advance and underlying hepatotoxicity. Khalil SM; MacKenzie KR; Maletic-Savatic M; Li F Drug Metab Rev; 2024; 56(2):97-126. PubMed ID: 38311829 [TBL] [Abstract][Full Text] [Related]
10. Metalloporphyrin-Catalyzed Oxidation of Sunitinib and Pazopanib, Two Anticancer Tyrosine Kinase Inhibitors: Evidence for New Potentially Toxic Metabolites. Paludetto MN; Bijani C; Puisset F; Bernardes-Génisson V; Arellano C; Robert A J Med Chem; 2018 Sep; 61(17):7849-7860. PubMed ID: 30102538 [TBL] [Abstract][Full Text] [Related]
11. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Shah RR; Morganroth J; Shah DR Drug Saf; 2013 Jul; 36(7):491-503. PubMed ID: 23620168 [TBL] [Abstract][Full Text] [Related]
12. Reactive metabolite activation by CYP2C19-mediated rhein hepatotoxicity. He LN; Yang AH; Cui TY; Zhai YR; Zhang FL; Chen JX; Jin CH; Fan YW; Wu ZJ; Wang LL; He X Xenobiotica; 2015 Apr; 45(4):361-72. PubMed ID: 25815638 [TBL] [Abstract][Full Text] [Related]
14. Novel risk assessment of reactive metabolites from discovery to clinical stage. Kakutani N; Nanayama T; Nomura Y J Toxicol Sci; 2019; 44(3):201-211. PubMed ID: 30842372 [TBL] [Abstract][Full Text] [Related]
15. Mechanism-Based Inhibitors from Phytomedicine: Risks of Hepatotoxicity and their Potential Hepatotoxic Substructures. Wang L; He X; Jin C; Ondieki G Curr Drug Metab; 2016; 17(10):971-991. PubMed ID: 27890005 [TBL] [Abstract][Full Text] [Related]
16. Use of Structural Alerts for Reactive Metabolites in the Application SpotRM. Claesson A Chem Res Toxicol; 2024 Aug; 37(8):1231-1245. PubMed ID: 39088358 [TBL] [Abstract][Full Text] [Related]
17. Metabolomics reveals the formation of aldehydes and iminium in gefitinib metabolism. Liu X; Lu Y; Guan X; Dong B; Chavan H; Wang J; Zhang Y; Krishnamurthy P; Li F Biochem Pharmacol; 2015 Sep; 97(1):111-21. PubMed ID: 26212543 [TBL] [Abstract][Full Text] [Related]
18. Integrating network pharmacology and drug side-effect data to explore mechanism of liver injury-induced by tyrosine kinase inhibitors. Tang M; Wu ZE; Li F Comput Biol Med; 2024 Mar; 170():108040. PubMed ID: 38308871 [TBL] [Abstract][Full Text] [Related]
19. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. Gómez-Lechón MJ; Tolosa L; Donato MT J Appl Toxicol; 2016 Jun; 36(6):752-68. PubMed ID: 26691983 [TBL] [Abstract][Full Text] [Related]
20. In vitro metabolism of tolcapone to reactive intermediates: relevance to tolcapone liver toxicity. Smith KS; Smith PL; Heady TN; Trugman JM; Harman WD; Macdonald TL Chem Res Toxicol; 2003 Feb; 16(2):123-8. PubMed ID: 12588182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]