BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31111665)

  • 1. Electronic Doping Controlled Migration of Dislocations in Polycrystalline 2D WS
    Zou X; Liu M; Yakobson BI
    Small; 2019 Jul; 15(27):e1805145. PubMed ID: 31111665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides.
    Li X; Yang J; Sun H; Huang L; Li H; Shi J
    Adv Mater; 2023 Jul; ():e2305115. PubMed ID: 37406665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An open canvas--2D materials with defects, disorder, and functionality.
    Zou X; Yakobson BI
    Acc Chem Res; 2015 Jan; 48(1):73-80. PubMed ID: 25514190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct n- to p-Type Channel Conversion in Monolayer/Few-Layer WS
    Tang B; Yu ZG; Huang L; Chai J; Wong SL; Deng J; Yang W; Gong H; Wang S; Ang KW; Zhang YW; Chi D
    ACS Nano; 2018 Mar; 12(3):2506-2513. PubMed ID: 29505235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon doping of WS
    Zhang F; Lu Y; Schulman DS; Zhang T; Fujisawa K; Lin Z; Lei Y; Elias AL; Das S; Sinnott SB; Terrones M
    Sci Adv; 2019 May; 5(5):eaav5003. PubMed ID: 31139746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.
    Kim C; Moon I; Lee D; Choi MS; Ahmed F; Nam S; Cho Y; Shin HJ; Park S; Yoo WJ
    ACS Nano; 2017 Feb; 11(2):1588-1596. PubMed ID: 28088846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride molecular doping technique on 2D materials: WS2 and MoS2.
    Yang L; Majumdar K; Liu H; Du Y; Wu H; Hatzistergos M; Hung PY; Tieckelmann R; Tsai W; Hobbs C; Ye PD
    Nano Lett; 2014 Nov; 14(11):6275-80. PubMed ID: 25310177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedment of Multiple Transition Metal Impurities into WS
    Siao MD; Lin YC; He T; Tsai MY; Lee KY; Chang SY; Lin KI; Lin YF; Chou MY; Suenaga K; Chiu PW
    Small; 2021 Apr; 17(17):e2007171. PubMed ID: 33711202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.
    Shi W; Ye J; Zhang Y; Suzuki R; Yoshida M; Miyazaki J; Inoue N; Saito Y; Iwasa Y
    Sci Rep; 2015 Aug; 5():12534. PubMed ID: 26235962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance.
    Khalil HM; Khan MF; Eom J; Noh H
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23589-96. PubMed ID: 26434774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Turn-On Voltage and Boosted Mobility in Monolayer WS
    Hou J; Ke C; Chen J; Sun B; Xia Y; Li X; Chen T; Wu Y; Wu Z; Kang J
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19635-19642. PubMed ID: 32255332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional transition metal dichalcogenides: interface and defect engineering.
    Hu Z; Wu Z; Han C; He J; Ni Z; Chen W
    Chem Soc Rev; 2018 May; 47(9):3100-3128. PubMed ID: 29509206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends and prospects of 2-D tungsten disulphide (WS
    Uthappa UT; Nehra M; Kumar R; Dilbaghi N; Marrazza G; Kaushik A; Kumar S
    Adv Colloid Interface Sci; 2023 Dec; 322():103024. PubMed ID: 37952364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Facile and Effective Method for Patching Sulfur Vacancies of WS
    Jiang J; Zhang Q; Wang A; Zhang Y; Meng F; Zhang C; Feng X; Feng Y; Gu L; Liu H; Han L
    Small; 2019 Sep; 15(36):e1901791. PubMed ID: 31211505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment.
    Chee SS; Oh C; Son M; Son GC; Jang H; Yoo TJ; Lee S; Lee W; Hwang JY; Choi H; Lee BH; Ham MH
    Nanoscale; 2017 Jul; 9(27):9333-9339. PubMed ID: 28463375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges.
    Liao W; Zhao S; Li F; Wang C; Ge Y; Wang H; Wang S; Zhang H
    Nanoscale Horiz; 2020 May; 5(5):787-807. PubMed ID: 32129353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material-Selective Doping of 2D TMDC through Al
    Leonhardt A; Chiappe D; Afanas'ev VV; El Kazzi S; Shlyakhov I; Conard T; Franquet A; Huyghebaert C; de Gendt S
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42697-42707. PubMed ID: 31625717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure Mosaicity of Monolayer Transition Metal Dichalcogenides by Spontaneous Pattern Formation of Donor Molecules.
    Ichimiya H; Takinoue M; Fukui A; Yoshimura T; Ashida A; Fujimura N; Kiriya D
    ACS Appl Mater Interfaces; 2019 May; 11(17):15922-15926. PubMed ID: 30957480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect Engineering of 2D Semiconductors for Dual Control of Emission and Carrier Polarity.
    Chen Y; Liu H; Yu G; Ma C; Xu Z; Zhang J; Zhang C; Chen M; Li D; Zheng W; Luo Z; Yang X; Li K; Yao C; Zhang D; Xu B; Yi J; Yi C; Li B; Zhang H; Zhang Z; Zhu X; Li S; Chen S; Jiang Y; Pan A
    Adv Mater; 2024 Apr; 36(14):e2312425. PubMed ID: 38146671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Defect Healing of Transition Metal Dichalcogenides by Metallophthalocyanine.
    Ahn H; Huang YC; Lin CW; Chiu YL; Lin EC; Lai YY; Lee YH
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29145-29152. PubMed ID: 30044602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.