BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31111673)

  • 1. A new justification of the Hartung-Knapp method for random-effects meta-analysis based on weighted least squares regression.
    van Aert RCM; Jackson D
    Res Synth Methods; 2019 Dec; 10(4):515-527. PubMed ID: 31111673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hartung-Knapp modification for random-effects meta-analysis: A useful refinement but are there any residual concerns?
    Jackson D; Law M; Rücker G; Schwarzer G
    Stat Med; 2017 Nov; 36(25):3923-3934. PubMed ID: 28748567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies.
    Röver C; Knapp G; Friede T
    BMC Med Res Methodol; 2015 Nov; 15():99. PubMed ID: 26573817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of statistically significant meta-analyses in advanced cancer patients using the Hartung-Knapp method and prediction intervals-A methodological study.
    Siemens W; Meerpohl JJ; Rohe MS; Buroh S; Schwarzer G; Becker G
    Res Synth Methods; 2022 May; 13(3):330-341. PubMed ID: 34932271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis.
    Wiksten A; Rücker G; Schwarzer G
    Stat Med; 2016 Jul; 35(15):2503-15. PubMed ID: 26842654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation.
    Partlett C; Riley RD
    Stat Med; 2017 Jan; 36(2):301-317. PubMed ID: 27714841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
    Seide SE; Röver C; Friede T
    BMC Med Res Methodol; 2019 Jan; 19(1):16. PubMed ID: 30634920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method.
    IntHout J; Ioannidis JP; Borm GF
    BMC Med Res Methodol; 2014 Feb; 14():25. PubMed ID: 24548571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for estimating between-study variance and overall effect in meta-analysis of odds ratios.
    Bakbergenuly I; Hoaglin DC; Kulinskaya E
    Res Synth Methods; 2020 May; 11(3):426-442. PubMed ID: 32112619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neither fixed nor random: weighted least squares meta-analysis.
    Stanley TD; Doucouliagos H
    Stat Med; 2015 Jun; 34(13):2116-27. PubMed ID: 25809462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different meta-analysis methods can change judgements about imprecision of effect estimates: a meta-epidemiological study.
    Wang Z; Alzuabi MA; Morgan RL; Mustafa RA; Falck-Ytter Y; Dahm P; Sultan S; Murad MH
    BMJ Evid Based Med; 2023 Apr; 28(2):126-132. PubMed ID: 36732029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
    Langan D; Higgins JPT; Jackson D; Bowden J; Veroniki AA; Kontopantelis E; Viechtbauer W; Simmonds M
    Res Synth Methods; 2019 Mar; 10(1):83-98. PubMed ID: 30067315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of procedures to test for moderators in mixed-effects meta-regression models.
    Viechtbauer W; López-López JA; Sánchez-Meca J; Marín-Martínez F
    Psychol Methods; 2015 Sep; 20(3):360-74. PubMed ID: 25110905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neither fixed nor random: weighted least squares meta-regression.
    Stanley TD; Doucouliagos H
    Res Synth Methods; 2017 Mar; 8(1):19-42. PubMed ID: 27322495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jointly pooling aggregated effect sizes and their standard errors from studies with continuous clinical outcomes.
    Almalik O; Zhan Z; Heuvel ERVD
    Biom J; 2022 Oct; 64(7):1340-1360. PubMed ID: 35754152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of methods for meta-analysis of a small number of studies with binary outcomes.
    Mathes T; Kuss O
    Res Synth Methods; 2018 Sep; 9(3):366-381. PubMed ID: 29573180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do statistical heterogeneity methods impact the results of meta- analyses? A meta epidemiological study.
    Mheissen S; Khan H; Normando D; Vaiid N; Flores-Mir C
    PLoS One; 2024; 19(3):e0298526. PubMed ID: 38502662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for evidence synthesis in the case of very few studies.
    Bender R; Friede T; Koch A; Kuss O; Schlattmann P; Schwarzer G; Skipka G
    Res Synth Methods; 2018 Sep; 9(3):382-392. PubMed ID: 29504289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods.
    Weber F; Knapp G; Glass Ä; Kundt G; Ickstadt K
    Res Synth Methods; 2021 May; 12(3):291-315. PubMed ID: 33264488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases.
    Friede T; Röver C; Wandel S; Neuenschwander B
    Biom J; 2017 Jul; 59(4):658-671. PubMed ID: 27754556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.