These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 31111697)
1. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related]
2. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier. Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864 [TBL] [Abstract][Full Text] [Related]
3. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. Sun Y; Li S; Sun Z J Biomed Opt; 2017 Jan; 22(1):16012. PubMed ID: 28114453 [TBL] [Abstract][Full Text] [Related]
4. A new intelligent system based deep learning to detect DME and AMD in OCT images. Gueddena Y; Aboudi N; Zgolli H; Mabrouk S; Sidibe D; Tabia H; Khlifa N Int Ophthalmol; 2024 Apr; 44(1):191. PubMed ID: 38653842 [TBL] [Abstract][Full Text] [Related]
5. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
6. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
7. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism. Sun Y; Zhang H; Yao X J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026 [TBL] [Abstract][Full Text] [Related]
8. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
9. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926 [TBL] [Abstract][Full Text] [Related]
10. Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble. Rasti R; Rabbani H; Mehridehnavi A; Hajizadeh F IEEE Trans Med Imaging; 2018 Apr; 37(4):1024-1034. PubMed ID: 29610079 [TBL] [Abstract][Full Text] [Related]
11. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
12. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms. Rashno A; Koozekanani DD; Drayna PM; Nazari B; Sadri S; Rabbani H; Parhi KK IEEE Trans Biomed Eng; 2018 May; 65(5):989-1001. PubMed ID: 28783619 [TBL] [Abstract][Full Text] [Related]
13. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132 [TBL] [Abstract][Full Text] [Related]
14. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
15. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Liu YY; Chen M; Ishikawa H; Wollstein G; Schuman JS; Rehg JM Med Image Anal; 2011 Oct; 15(5):748-59. PubMed ID: 21737338 [TBL] [Abstract][Full Text] [Related]
16. Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. Girish GN; Thakur B; Chowdhury SR; Kothari AR; Rajan J IEEE J Biomed Health Inform; 2019 Jan; 23(1):296-304. PubMed ID: 29994161 [TBL] [Abstract][Full Text] [Related]
17. Classification of SD-OCT volumes with multi pyramids, LBP and HOG descriptors: application to DME detections. Alsaih K; Lemaitre G; Vall JM; Rastgoo M; Sidibe D; Wong TY; Lamoureux E; Milea D; Cheung CY; Meriaudeau F Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1344-1347. PubMed ID: 28268574 [TBL] [Abstract][Full Text] [Related]
19. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Liu YY; Ishikawa H; Chen M; Wollstein G; Duker JS; Fujimoto JG; Schuman JS; Rehg JM Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8316-22. PubMed ID: 21911579 [TBL] [Abstract][Full Text] [Related]
20. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]