These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31111892)

  • 1. The function of S-nitrosothiols during abiotic stress in plants.
    Begara-Morales JC; Chaki M; Valderrama R; Mata-Pérez C; Padilla MN; Barroso JB
    J Exp Bot; 2019 Aug; 70(17):4429-4439. PubMed ID: 31111892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide function in plant biology: a redox cue in deconvolution.
    Yu M; Lamattina L; Spoel SH; Loake GJ
    New Phytol; 2014 Jun; 202(4):1142-1156. PubMed ID: 24611485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification and Localization of S-Nitrosothiols (SNOs) in Higher Plants.
    Barroso JB; Valderrama R; Carreras A; Chaki M; Begara-Morales JC; Sánchez-Calvo B; Corpas FJ
    Methods Mol Biol; 2016; 1424():139-47. PubMed ID: 27094417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress.
    Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S
    Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide buffering and conditional nitric oxide release in stress response.
    Begara-Morales JC; Chaki M; Valderrama R; Sánchez-Calvo B; Mata-Pérez C; Padilla MN; Corpas FJ; Barroso JB
    J Exp Bot; 2018 Jun; 69(14):3425-3438. PubMed ID: 29506191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-Nitrosylation in plants: pattern and function.
    Lindermayr C; Durner J
    J Proteomics; 2009 Nov; 73(1):1-9. PubMed ID: 19619680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorimetric-Based Method to Detect and Quantify Total S-Nitrosothiols (SNOs) in Plant Samples.
    Mioto PT; Matiz A; Freschi L; Corpas FJ
    Methods Mol Biol; 2020; 2057():37-43. PubMed ID: 31595468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples.
    Tichá T; Luhová L; Petřivalský M
    Methods Mol Biol; 2018; 1747():267-280. PubMed ID: 29600466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein S-nitrosylation in plants: photorespiratory metabolism and NO signaling.
    Gupta KJ
    Sci Signal; 2011 Jan; 4(154):jc1. PubMed ID: 21205936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of S-Nitrosated Nuclear Proteins in Pathogen-Treated Arabidopsis Cell Cultures Using Biotin Switch Technique.
    Shekariesfahlan A; Lindermayr C
    Methods Mol Biol; 2018; 1747():205-221. PubMed ID: 29600461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment.
    Paul S; Roychoudhury A
    Physiol Plant; 2020 Feb; 168(2):374-393. PubMed ID: 31479515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of S-nitrosylated proteins in plants.
    Sell S; Lindermayr C; Durner J
    Methods Enzymol; 2008; 440():283-93. PubMed ID: 18423225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of S-nitrosylated proteins in potato plant.
    Kato H; Takemoto D; Kawakita K
    Physiol Plant; 2013 Jul; 148(3):371-86. PubMed ID: 22924747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling.
    Stomberski CT; Hess DT; Stamler JS
    Antioxid Redox Signal; 2019 Apr; 30(10):1331-1351. PubMed ID: 29130312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-nitrosylation: an emerging redox-based post-translational modification in plants.
    Wang Y; Yun BW; Kwon E; Hong JK; Yoon J; Loake GJ
    J Exp Bot; 2006; 57(8):1777-84. PubMed ID: 16714306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating the regulator: nitric oxide control of post-translational modifications.
    Gupta KJ; Kolbert Z; Durner J; Lindermayr C; Corpas FJ; Brouquisse R; Barroso JB; Umbreen S; Palma JM; Hancock JT; Petrivalsky M; Wendehenne D; Loake GJ
    New Phytol; 2020 Sep; 227(5):1319-1325. PubMed ID: 32339293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide and hydrogen sulfide in plants: which comes first?
    Corpas FJ; González-Gordo S; Cañas A; Palma JM
    J Exp Bot; 2019 Aug; 70(17):4391-4404. PubMed ID: 30715479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation.
    Wei L; Zhang M; Wei S; Zhang J; Wang C; Liao W
    Environ Pollut; 2020 Apr; 259():113943. PubMed ID: 32023797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between protein carbonylation and nitrosylation in plants.
    Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G
    Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.