These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31111982)

  • 1. A Histidine Residue and a Tetranuclear Cuprous-thiolate Cluster Dominate the Copper Loading Landscape of a Copper Storage Protein from Streptomyces lividans.
    Straw ML; Hough MA; Wilson MT; Worrall JAR
    Chemistry; 2019 Aug; 25(45):10678-10688. PubMed ID: 31111982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the Cys-X-X-X-Cys motif on the kinetics of cupric ion loading to the Streptomyces lividans Sco protein.
    Blundell KL; Wilson MT; Vijgenboom E; Worrall JA
    Dalton Trans; 2013 Aug; 42(29):10608-16. PubMed ID: 23759834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and mechanistic insights into an extracytoplasmic copper trafficking pathway in Streptomyces lividans.
    Blundell KL; Hough MA; Vijgenboom E; Worrall JA
    Biochem J; 2014 May; 459(3):525-38. PubMed ID: 24548299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.
    Straw ML; Chaplin AK; Hough MA; Paps J; Bavro VN; Wilson MT; Vijgenboom E; Worrall JAR
    Metallomics; 2018 Jan; 10(1):180-193. PubMed ID: 29292456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
    Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR
    J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper trafficking in the CsoR regulon of Streptomyces lividans.
    Chaplin AK; Tan BG; Vijgenboom E; Worrall JA
    Metallomics; 2015 Jan; 7(1):145-55. PubMed ID: 25409712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into conformational switching in the copper metalloregulator CsoR from Streptomyces lividans.
    Porto TV; Hough MA; Worrall JA
    Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1872-8. PubMed ID: 26327377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking.
    Xiao Z; Loughlin F; George GN; Howlett GJ; Wedd AG
    J Am Chem Soc; 2004 Mar; 126(10):3081-90. PubMed ID: 15012137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active-site maturation and activity of the copper-radical oxidase GlxA are governed by a tryptophan residue.
    Chaplin AK; Svistunenko DA; Hough MA; Wilson MT; Vijgenboom E; Worrall JA
    Biochem J; 2017 Feb; 474(5):809-825. PubMed ID: 28093470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing Biological Copper Storage: The Importance of Thiolate-Coordinated Tetranuclear Clusters.
    Baslé A; Platsaki S; Dennison C
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8697-8700. PubMed ID: 28504850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray absorption spectroscopy of cuprous-thiolate clusters in Saccharomyces cerevisiae metallothionein.
    Zhang L; Pickering IJ; Winge DR; George GN
    Chem Biodivers; 2008 Oct; 5(10):2042-2049. PubMed ID: 18972536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tetranuclear Cu(I) cluster in the metallochaperone protein CopZ.
    Hearnshaw S; West C; Singleton C; Zhou L; Kihlken MA; Strange RW; Le Brun NE; Hemmings AM
    Biochemistry; 2009 Oct; 48(40):9324-6. PubMed ID: 19746989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy of a red copper center: spectroscopic identification and reactivity of the copper centers of Bacillus subtilis Sco and its Cys-to-Ala variants.
    Siluvai GS; Mayfield M; Nilges MJ; Debeer George S; Blackburn NJ
    J Am Chem Soc; 2010 Apr; 132(14):5215-26. PubMed ID: 20232870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones.
    Pushie MJ; Zhang L; Pickering IJ; George GN
    Biochim Biophys Acta; 2012 Jun; 1817(6):938-47. PubMed ID: 22056518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the cuprous-thiolate clusters of the Mac1 and Ace1 transcriptional activators.
    Brown KR; Keller GL; Pickering IJ; Harris HH; George GN; Winge DR
    Biochemistry; 2002 May; 41(20):6469-76. PubMed ID: 12009910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR).
    Dwarakanath S; Chaplin AK; Hough MA; Rigali S; Vijgenboom E; Worrall JAR
    J Biol Chem; 2012 May; 287(21):17833-17847. PubMed ID: 22451651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor.
    Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K
    Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pi-pi interaction between aromatic ring and copper-coordinated His81 imidazole regulates the blue copper active-site structure.
    Abdelhamid RF; Obara Y; Uchida Y; Kohzuma T; Dooley DM; Brown DE; Hori H
    J Biol Inorg Chem; 2007 Feb; 12(2):165-73. PubMed ID: 17031705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity.
    Vita N; Landolfi G; Baslé A; Platsaki S; Lee J; Waldron KJ; Dennison C
    Sci Rep; 2016 Dec; 6():39065. PubMed ID: 27991525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.