These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31112008)

  • 21. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone formation in a rat tibial defect model using carboxymethyl cellulose/BioC/bone morphogenic protein-2 hybrid materials.
    Song SH; Yun YP; Kim HJ; Park K; Kim SE; Song HR
    Biomed Res Int; 2014; 2014():230152. PubMed ID: 24804202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of teriparatide on bone formation in novel unidirectional porous beta-tricalcium phosphate.
    Kumagai H; Funayama T; Sugaya H; Yoshioka T; Makihara T; Tomaru Y; Arai N; Sato K; Miura K; Noguchi H; Abe T; Koda M; Mishima H; Yamazaki M
    J Biomater Appl; 2019 Nov; 34(5):721-727. PubMed ID: 31387420
    [No Abstract]   [Full Text] [Related]  

  • 24. In vitro testing of Advanced JAX Bone Void Filler System: species differences in the response of bone marrow stromal cells to beta tri-calcium phosphate and carboxymethylcellulose gel.
    Clarke SA; Hoskins NL; Jordan GR; Henderson SA; Marsh DR
    J Mater Sci Mater Med; 2007 Dec; 18(12):2283-90. PubMed ID: 17562143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN; Panda NN; Mund R; Pramanik K
    Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.
    Ding M; Henriksen SS; Martinetti R; Overgaard S
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2465-2476. PubMed ID: 27655015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications.
    Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH
    J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model.
    Zhao YN; Fan JJ; Li ZQ; Liu YW; Wu YP; Liu J
    Artif Organs; 2017 Feb; 41(2):199-204. PubMed ID: 27401022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation.
    Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S
    J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds.
    Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA
    J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Study on the Application of Mesenchymal Stromal Cells Combined with Tricalcium Phosphate Scaffold into Femoral Bone Defects.
    Šponer P; Kučera T; Brtková J; Urban K; Kočí Z; Měřička P; Bezrouk A; Konrádová Š; Filipová A; Filip S
    Cell Transplant; 2018 Oct; 27(10):1459-1468. PubMed ID: 30203687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osseointegration of acellular and cellularized osteoconductive scaffolds: is tissue engineering using mesenchymal stem cells necessary for implant fixation?
    García-Gareta E; Hua J; Blunn GW
    J Biomed Mater Res A; 2015 Mar; 103(3):1067-76. PubMed ID: 24913035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering.
    Sharmila G; Muthukumaran C; Kirthika S; Keerthana S; Kumar NM; Jeyanthi J
    Int J Biol Macromol; 2020 Aug; 156():430-437. PubMed ID: 32294496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the sintering temperature on the mechanical behavior of β-tricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method.
    de Siqueira L; de Paula CG; Gouveia RF; Motisuke M; de Sousa Trichês E
    J Mech Behav Biomed Mater; 2019 Feb; 90():635-643. PubMed ID: 30502672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of an increased strut porosity silicate-substituted calcium phosphate, SiCaP EP, as a synthetic bone graft substitute in spinal fusion surgery: a prospective, open-label study.
    Bolger C; Jones D; Czop S
    Eur Spine J; 2019 Jul; 28(7):1733-1742. PubMed ID: 30834972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: an ovine femoral condyle defect study.
    Tayton E; Purcell M; Smith JO; Lanham S; Howdle SM; Shakesheff KM; Goodship A; Blunn G; Fowler D; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2015 Apr; 103(4):1346-56. PubMed ID: 25044983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements.
    An J; Liao H; Kucko NW; Herber RP; Wolke JG; van den Beucken JJ; Jansen JA; Leeuwenburgh SC
    J Biomed Mater Res A; 2016 May; 104(5):1072-81. PubMed ID: 26743230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.