BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31112078)

  • 1. Consensus QSPR modelling for the prediction of cellular response and fibrinogen adsorption to the surface of polymeric biomaterials.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2019 May; 30(5):363-382. PubMed ID: 31112078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSPR Modeling of the Refractive Index for Diverse Polymers Using 2D Descriptors.
    Khan PM; Rasulev B; Roy K
    ACS Omega; 2018 Oct; 3(10):13374-13386. PubMed ID: 31458051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2021 Jul; 32(7):595-614. PubMed ID: 34148451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction reliability of QSAR models: an overview of various validation tools.
    De P; Kar S; Ambure P; Roy K
    Arch Toxicol; 2022 May; 96(5):1279-1295. PubMed ID: 35267067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR modelling for prediction of glass transition temperature of diverse polymers.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2018 Dec; 29(12):935-956. PubMed ID: 30392386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces.
    Smith JR; Knight D; Kohn J; Rasheed K; Weber N; Kholodovych V; Welsh WJ
    J Chem Inf Comput Sci; 2004; 44(3):1088-97. PubMed ID: 15154777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemometric Modelling of Heat Release Capacity, Total Heat Release and Char Formation of Polymers to Assess Their Flammability Characteristics.
    Khan PM; Roy K
    Mol Inform; 2022 Jan; 41(1):e2000030. PubMed ID: 32463174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices.
    Weber N; Pesnell A; Bolikal D; Zeltinger J; Kohn J
    Langmuir; 2007 Mar; 23(6):3298-304. PubMed ID: 17291015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on modeling and prediction of optical rotation for biodegradable polymers containing α-amino acids using QSAR approaches.
    Mallakpour S; Hatami M; Golmohammadi H
    J Mol Model; 2011 Jul; 17(7):1743-53. PubMed ID: 21061033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique.
    Weber N; Bolikal D; Bourke SL; Kohn J
    J Biomed Mater Res A; 2004 Mar; 68(3):496-503. PubMed ID: 14762929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Refractive Index Study of a Diverse Set of Polymeric Materials by QSPR with Quantum-Chemical and Additive Descriptors.
    Erickson ME; Ngongang M; Rasulev B
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32825028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of viscoelastic protein layers on polymeric surfaces relevant to platelet adhesion.
    Weber N; Wendel HP; Kohn J
    J Biomed Mater Res A; 2005 Mar; 72(4):420-7. PubMed ID: 15678483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of QSAR for the identification of key molecular fragments and reliable predictions of effects of textile dyes on growth rate and biomass values of Raphidocelis subcapitata.
    Jillella GK; Ojha PK; Roy K
    Aquat Toxicol; 2021 Jul; 238():105925. PubMed ID: 34332198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postadsorptive transitions in fibrinogen: influence of polymer properties.
    Rapoza RJ; Horbett TA
    J Biomed Mater Res; 1990 Oct; 24(10):1263-87. PubMed ID: 2283349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Fibrinogen Adsorption for Biodegradable Polymers: Integration of Molecular Dynamics and Surrogate Modeling.
    Gubskaya AV; Kholodovych V; Knight D; Kohn J; Welsh WJ
    Polymer (Guildf); 2007 Sep; 48(19):5788-5801. PubMed ID: 19568328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood compatibility of surfaces with superlow protein adsorption.
    Zhang Z; Zhang M; Chen S; Horbett TA; Ratner BD; Jiang S
    Biomaterials; 2008 Nov; 29(32):4285-91. PubMed ID: 18722010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel "anchor modification" of polymeric biomaterial surfaces by the utilization of cyclodextrin inclusion complex supramolecules.
    Zhao X; Courtney JM
    J Biomed Mater Res A; 2009 Jul; 90(1):282-91. PubMed ID: 18508336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of zwitterionic SAMs on protein adsorption and the attachment of algal cells.
    Bauer S; Alles M; Finlay JA; Callow JA; Callow ME; Rosenhahn A
    J Biomater Sci Polym Ed; 2014; 25(14-15):1530-9. PubMed ID: 24955504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Precise Are Our Quantitative Structure-Activity Relationship Derived Predictions for New Query Chemicals?
    Roy K; Ambure P; Kar S
    ACS Omega; 2018 Sep; 3(9):11392-11406. PubMed ID: 31459245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrinogen adsorption onto macroporous polymeric surfaces: correlation with biocompatibility aspects.
    Bajpai AK
    J Mater Sci Mater Med; 2008 Jan; 19(1):343-57. PubMed ID: 17597372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.