These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31112166)

  • 1. Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface.
    Fuller J; Fortunelli A; Goddard WA; An Q
    Phys Chem Chem Phys; 2019 Jun; 21(21):11444-11454. PubMed ID: 31112166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design.
    Fuller J; An Q; Fortunelli A; Goddard WA
    Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface.
    Qian J; An Q; Fortunelli A; Nielsen RJ; Goddard WA
    J Am Chem Soc; 2018 May; 140(20):6288-6297. PubMed ID: 29701965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si-Doped Fe Catalyst for Ammonia Synthesis at Dramatically Decreased Pressures and Temperatures.
    An Q; Mcdonald M; Fortunelli A; Goddard WA
    J Am Chem Soc; 2020 May; 142(18):8223-8232. PubMed ID: 32271551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM-Mechanism-Based Hierarchical High-Throughput in Silico Screening Catalyst Design for Ammonia Synthesis.
    An Q; Shen Y; Fortunelli A; Goddard WA
    J Am Chem Soc; 2018 Dec; 140(50):17702-17710. PubMed ID: 30479122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis.
    An Q; McDonald M; Fortunelli A; Goddard WA
    ACS Nano; 2021 Jan; 15(1):1675-1684. PubMed ID: 33355457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Behavior of K-doped Fe/MgO Catalysts for Ammonia Synthesis Under Mild Reaction Conditions.
    Era K; Sato K; Miyahara SI; Naito T; De Silva K; Akrami S; Yamada H; Toriyama T; Yamamoto T; Murakami Y; Aika KI; Inazu K; Nagaoka K
    ChemSusChem; 2023 Nov; 16(22):e202300942. PubMed ID: 37877342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking the Linear Relation in the Dissociation of Nitrogen on Iron Surfaces.
    Liu D; Zhao W; Yuan Q
    Chemphyschem; 2022 Sep; 23(17):e202200147. PubMed ID: 35608395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst.
    Wang X; Peng X; Chen W; Liu G; Zheng A; Zheng L; Ni J; Au CT; Jiang L
    Nat Commun; 2020 Jan; 11(1):653. PubMed ID: 32005833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the Potential of MXene in Catalysis: Decorated Mo
    Sfeir A; Shuck CE; Fadel A; Marinova M; Vezin H; Dacquin JP; Gogotsi Y; Royer S; Laassiri S
    J Am Chem Soc; 2024 Jul; 146(29):20033-20044. PubMed ID: 38996197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operando probing of the surface chemistry during the Haber-Bosch process.
    Goodwin CM; Lömker P; Degerman D; Davies B; Shipilin M; Garcia-Martinez F; Koroidov S; Katja Mathiesen J; Rameshan R; Rodrigues GLS; Schlueter C; Amann P; Nilsson A
    Nature; 2024 Jan; 625(7994):282-286. PubMed ID: 38200297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of N
    Musgrave CB; Morozov S; Schinski WL; Goddard WA
    J Phys Chem Lett; 2021 Feb; 12(6):1696-1701. PubMed ID: 33560856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: a combined density functional theory and kinetic Monte Carlo study.
    Yeo SC; Lo YC; Li J; Lee HM
    J Chem Phys; 2014 Oct; 141(13):134108. PubMed ID: 25296785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous Fe
    Liu JC; Ma XL; Li Y; Wang YG; Xiao H; Li J
    Nat Commun; 2018 Apr; 9(1):1610. PubMed ID: 29686395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elementary kinetics of nitrogen electroreduction on Fe surfaces.
    Maheshwari S; Rostamikia G; Janik MJ
    J Chem Phys; 2019 Jan; 150(4):041708. PubMed ID: 30709282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface.
    Wang H; Chen Y; Fan R; Chen J; Wang Z; Mao S; Wang Y
    Research (Wash D C); 2019; 2019():1401209. PubMed ID: 31912026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and kinetics for both thermal and electrochemical reduction of N
    Chen LY; Kuo TC; Hong ZS; Cheng MJ; Goddard WA
    Phys Chem Chem Phys; 2019 Aug; 21(32):17605-17612. PubMed ID: 31384855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwich-like reduced graphene oxide/yolk-shell-structured Fe@Fe
    Li C; Fu Y; Wu Z; Xia J; Wang X
    Nanoscale; 2019 Jul; 11(27):12997-13006. PubMed ID: 31265035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis.
    Lu Y; Yang Y; Zhang T; Ge Z; Chang H; Xiao P; Xie Y; Hua L; Li Q; Li H; Ma B; Guan N; Ma Y; Chen Y
    ACS Nano; 2016 Nov; 10(11):10507-10515. PubMed ID: 27934092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.