BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31112168)

  • 1. Structure and reactivity of the first-row d-block metal-superoxo complexes.
    Fukuzumi S; Lee YM; Nam W
    Dalton Trans; 2019 Jul; 48(26):9469-9489. PubMed ID: 31112168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex.
    Devi T; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2018 Jul; 140(27):8372-8375. PubMed ID: 29949715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands.
    Goo YR; Maity AC; Cho KB; Lee YM; Seo MS; Park YJ; Cho J; Nam W
    Inorg Chem; 2015 Nov; 54(21):10513-20. PubMed ID: 26486819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic hydroxylation of anthracene derivatives by a chromium(iii)-superoxo complex via proton-coupled electron transfer.
    Devi T; Lee YM; Nam W; Fukuzumi S
    Chem Commun (Camb); 2019 Jul; 55(57):8286-8289. PubMed ID: 31246193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2018 Sep; 51(9):2014-2022. PubMed ID: 30179459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues.
    Devi T; Lee YM; Jung J; Sankaralingam M; Nam W; Fukuzumi S
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3510-3515. PubMed ID: 28266771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)-superoxo complex via a proton-coupled hydrogen atom transfer.
    Devi T; Lee YM; Fukuzumi S; Nam W
    Dalton Trans; 2021 Jan; 50(2):675-680. PubMed ID: 33331375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric-Superoxo Complexes.
    Chen H; Cho KB; Lai W; Nam W; Shaik S
    J Chem Theory Comput; 2012 Mar; 8(3):915-26. PubMed ID: 26593354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex.
    Zhu W; Sharma N; Lee YM; El-Khouly ME; Fukuzumi S; Nam W
    Inorg Chem; 2023 Mar; 62(10):4116-4123. PubMed ID: 36862977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chromium(III)-superoxo complex in oxygen atom transfer reactions as a chemical model of cysteine dioxygenase.
    Cho J; Woo J; Nam W
    J Am Chem Soc; 2012 Jul; 134(27):11112-5. PubMed ID: 22713134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex.
    Hong S; Sutherlin KD; Park J; Kwon E; Siegler MA; Solomon EI; Nam W
    Nat Commun; 2014 Dec; 5():5440. PubMed ID: 25510711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the ring size of TMC ligands in controlling C-H bond activation by metal-superoxo species.
    Monika ; Ansari A
    Dalton Trans; 2022 Apr; 51(15):5878-5889. PubMed ID: 35347335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mononuclear nickel(II)-superoxo and nickel(III)-peroxo complexes bearing a common macrocyclic TMC ligand.
    Cho J; Kang HY; Liu LV; Sarangi R; Solomon EI; Nam W
    Chem Sci; 2013 Apr; 4(4):1502-1508. PubMed ID: 23662168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mononuclear metal-O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands.
    Cho J; Sarangi R; Nam W
    Acc Chem Res; 2012 Aug; 45(8):1321-30. PubMed ID: 22612523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mononuclear Manganese(III) Superoxo Complexes: Synthesis, Characterization, and Reactivity.
    Lin YH; Cramer HH; van Gastel M; Tsai YH; Chu CY; Kuo TS; Lee IR; Ye S; Bill E; Lee WZ
    Inorg Chem; 2019 Aug; 58(15):9756-9765. PubMed ID: 31328507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Electron-Transfer Reactivity of a Chromium(III)-Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions.
    Devi T; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2020 Jan; 142(1):365-372. PubMed ID: 31800223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Density Functional Theory Study on Comparing the Reactivity of [Mn(13-TMC)(OOH)]
    Ganesan K; Kaliyaperumal I; Vadivelu P
    Inorg Chem; 2021 Sep; 60(17):13615-13625. PubMed ID: 34410107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.
    Nishida Y; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2014 Jun; 136(22):8042-9. PubMed ID: 24809677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Structure and Reactivity of Mononuclear Nonheme Iron-Peroxo Complexes as a Biomimetic Model of Rieske Oxygenases: Ring Size Effects of Macrocyclic Ligands.
    Zhu W; Wu P; Larson VA; Kumar A; Li XX; Seo MS; Lee YM; Wang B; Lehnert N; Nam W
    J Am Chem Soc; 2024 Jan; 146(1):250-262. PubMed ID: 38147793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.