BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 31112357)

  • 1. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model.
    Alluri R; Song X; Bougioukli S; Pannell W; Vakhshori V; Sugiyama O; Tang A; Park SH; Chen Y; Lieberman JR
    J Biomed Mater Res A; 2019 Oct; 107(10):2174-2182. PubMed ID: 31112357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing.
    Alluri R; Jakus A; Bougioukli S; Pannell W; Sugiyama O; Tang A; Shah R; Lieberman JR
    J Biomed Mater Res A; 2018 Apr; 106(4):1104-1110. PubMed ID: 29266747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional gene therapy for bone healing using a 3D printed scaffold in a rat femoral defect model.
    Kang HP; Ihn H; Robertson DM; Chen X; Sugiyama O; Tang A; Hollis R; Skorka T; Longjohn D; Oakes D; Shah R; Kohn D; Jakus AE; Lieberman JR
    J Biomed Mater Res A; 2021 Nov; 109(11):2346-2356. PubMed ID: 34018305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model.
    Virk MS; Conduah A; Park SH; Liu N; Sugiyama O; Cuomo A; Kang C; Lieberman JR
    Bone; 2008 May; 42(5):921-31. PubMed ID: 18295562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Form and functional repair of long bone using 3D-printed bioactive scaffolds.
    Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG
    J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional Gene Therapy with Transduced Human Cells: The Influence of "Cell Dose" on Bone Repair.
    Ihn H; Kang H; Iglesias B; Sugiyama O; Tang A; Hollis R; Bougioukli S; Skorka T; Park S; Longjohn D; Oakes DA; Kohn DB; Lieberman JR
    Tissue Eng Part A; 2021 Nov; 27(21-22):1422-1433. PubMed ID: 33882718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones.
    Liu WC; Robu IS; Patel R; Leu MC; Velez M; Chu TM
    Biomed Mater; 2014 Aug; 9(4):045013. PubMed ID: 25065552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo gene therapy using human bone marrow cells overexpressing BMP-2: "Next-day" gene therapy versus standard "two-step" approach.
    Bougioukli S; Alluri R; Pannell W; Sugiyama O; Vega A; Tang A; Skorka T; Park SH; Oakes D; Lieberman JR
    Bone; 2019 Nov; 128():115032. PubMed ID: 31398502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application.
    Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A
    ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.
    Kwon DY; Park JH; Jang SH; Park JY; Jang JW; Min BH; Kim WD; Lee HB; Lee J; Kim MS
    J Tissue Eng Regen Med; 2018 Feb; 12(2):516-528. PubMed ID: 28763610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats.
    Hsu WK; Sugiyama O; Park SH; Conduah A; Feeley BT; Liu NQ; Krenek L; Virk MS; An DS; Chen IS; Lieberman JR
    Bone; 2007 Apr; 40(4):931-8. PubMed ID: 17236835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration.
    Berner A; Boerckel JD; Saifzadeh S; Steck R; Ren J; Vaquette C; Zhang JQ; Nerlich M; Guldberg RE; Hutmacher DW; Woodruff MA
    Cell Tissue Res; 2012 Mar; 347(3):603-12. PubMed ID: 22277992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli-derived BMP-2-absorbed β-TCP granules induce bone regeneration in rabbit critical-sized femoral segmental defects.
    Kuroiwa Y; Niikura T; Lee SY; Oe K; Iwakura T; Fukui T; Matsumoto T; Matsushita T; Nishida K; Kuroda R
    Int Orthop; 2019 May; 43(5):1247-1253. PubMed ID: 30097727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.
    Sawyer AA; Song SJ; Susanto E; Chuan P; Lam CX; Woodruff MA; Hutmacher DW; Cool SM
    Biomaterials; 2009 May; 30(13):2479-88. PubMed ID: 19162318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect.
    Bougioukli S; Jain A; Sugiyama O; Tinsley BA; Tang AH; Tan MH; Adams DJ; Kostenuik PJ; Lieberman JR
    Bone; 2016 Mar; 84():93-103. PubMed ID: 26723577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects.
    Lee MK; DeConde AS; Lee M; Walthers CM; Sepahdari AR; Elashoff D; Grogan T; Bezouglaia O; Tetradis S; St John M; Aghaloo T
    Am J Otolaryngol; 2015; 36(1):1-6. PubMed ID: 25109658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair.
    Rai B; Oest ME; Dupont KM; Ho KH; Teoh SH; Guldberg RE
    J Biomed Mater Res A; 2007 Jun; 81(4):888-99. PubMed ID: 17236215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.