These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31112528)
1. The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. Stoehr A; Kennedy L; Yang Y; Patel S; Lin Y; Linask KL; Fergusson M; Zhu J; Gucek M; Zou J; Murphy E JCI Insight; 2019 May; 5(13):. PubMed ID: 31112528 [TBL] [Abstract][Full Text] [Related]
2. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Singleton RS; Liu-Yi P; Formenti F; Ge W; Sekirnik R; Fischer R; Adam J; Pollard PJ; Wolf A; Thalhammer A; Loenarz C; Flashman E; Yamamoto A; Coleman ML; Kessler BM; Wappner P; Schofield CJ; Ratcliffe PJ; Cockman ME Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4031-6. PubMed ID: 24550447 [TBL] [Abstract][Full Text] [Related]
3. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Stoehr A; Yang Y; Patel S; Evangelista AM; Aponte A; Wang G; Liu P; Boylston J; Kloner PH; Lin Y; Gucek M; Zhu J; Murphy E Cardiovasc Res; 2016 Jun; 110(3):346-58. PubMed ID: 27095734 [TBL] [Abstract][Full Text] [Related]
4. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases. Horita S; Scotti JS; Thinnes C; Mottaghi-Taromsari YS; Thalhammer A; Ge W; Aik W; Loenarz C; Schofield CJ; McDonough MA Structure; 2015 Apr; 23(4):639-52. PubMed ID: 25728928 [TBL] [Abstract][Full Text] [Related]
5. Ogfod1 deletion increases cardiac beta-alanine levels and protects mice against ischaemia- reperfusion injury. Harris M; Sun J; Keeran K; Aponte A; Singh K; Springer D; Gucek M; Pirooznia M; Cockman ME; Murphy E; Kennedy LM Cardiovasc Res; 2022 Oct; 118(13):2847-2858. PubMed ID: 34668514 [TBL] [Abstract][Full Text] [Related]
6. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Katz MJ; Acevedo JM; Loenarz C; Galagovsky D; Liu-Yi P; Pérez-Pepe M; Thalhammer A; Sekirnik R; Ge W; Melani M; Thomas MG; Simonetta S; Boccaccio GL; Schofield CJ; Cockman ME; Ratcliffe PJ; Wappner P Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4025-30. PubMed ID: 24550463 [TBL] [Abstract][Full Text] [Related]
7. Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Thinnes CC; Lohans CT; Abboud MI; Yeh TL; Tumber A; Nowak RP; Attwood M; Cockman ME; Oppermann U; Loenarz C; Schofield CJ Chemistry; 2019 Feb; 25(8):2019-2024. PubMed ID: 30427558 [TBL] [Abstract][Full Text] [Related]
8. OGFOD1 modulates the transcriptional and proteomic landscapes to alter isoproterenol-induced hypertrophy susceptibility. Rodriguez R; Harris M; Murphy E; Kennedy LM J Mol Cell Cardiol; 2023 Jun; 179():42-46. PubMed ID: 37084634 [TBL] [Abstract][Full Text] [Related]
9. Deleting the ribosomal prolyl hydroxylase OGFOD1 protects mice against diet-induced obesity and insulin resistance. Rodriguez R; Harris M; Kennedy LM PLoS One; 2024; 19(6):e0304761. PubMed ID: 38843265 [TBL] [Abstract][Full Text] [Related]
10. OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. Saito K; Adachi N; Koyama H; Matsushita M FEBS Lett; 2010 Aug; 584(15):3340-7. PubMed ID: 20579638 [TBL] [Abstract][Full Text] [Related]
11. The prolyl hydroxylase OGFOD1 promotes cancer cell proliferation by regulating the expression of cell cycle regulators. Fujisaki T; Saito K; Kikuchi T; Kondo E FEBS Lett; 2023 Apr; 597(8):1073-1085. PubMed ID: 36464654 [TBL] [Abstract][Full Text] [Related]
12. OGFOD1 is required for breast cancer cell proliferation and is associated with poor prognosis in breast cancer. Kim JH; Lee SM; Lee JH; Chun S; Kang BH; Kwak S; Roe JS; Kim TW; Kim H; Kim WH; Cho EJ; Youn HD Oncotarget; 2015 Aug; 6(23):19528-41. PubMed ID: 25909288 [TBL] [Abstract][Full Text] [Related]
13. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Loenarz C; Sekirnik R; Thalhammer A; Ge W; Spivakovsky E; Mackeen MM; McDonough MA; Cockman ME; Kessler BM; Ratcliffe PJ; Wolf A; Schofield CJ Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4019-24. PubMed ID: 24550462 [TBL] [Abstract][Full Text] [Related]
14. RBPMS regulates cardiomyocyte contraction and cardiac function through RNA alternative splicing. Gan P; Wang Z; Bezprozvannaya S; McAnally JR; Tan W; Li H; Bassel-Duby R; Liu N; Olson EN Cardiovasc Res; 2024 Feb; 120(1):56-68. PubMed ID: 37890031 [TBL] [Abstract][Full Text] [Related]
15. Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation. Seo K; Seo S; Ki SH; Shin SM Free Radic Biol Med; 2016 Dec; 101():511-523. PubMed ID: 27840318 [TBL] [Abstract][Full Text] [Related]
16. OGFOD1 negatively regulated by miR-1224-5p promotes proliferation in human papillomavirus-infected laryngeal papillomas. Yin D; Wang Q; Wang S; Zhu G; Tang Q; Liu J Mol Genet Genomics; 2020 May; 295(3):675-684. PubMed ID: 32002629 [TBL] [Abstract][Full Text] [Related]
17. Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells. Lin HC; Su SL; Lu CY; Lin AH; Lin WC; Liu CS; Yang YC; Wang HM; Lii CK; Chen HW Environ Toxicol; 2017 Mar; 32(3):918-930. PubMed ID: 27297870 [TBL] [Abstract][Full Text] [Related]
18. Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-Related mRNAs and Severe Systolic Dysfunction. Ortiz-Sánchez P; Villalba-Orero M; López-Olañeta MM; Larrasa-Alonso J; Sánchez-Cabo F; Martí-Gómez C; Camafeita E; Gómez-Salinero JM; Ramos-Hernández L; Nielsen PJ; Vázquez J; Müller-McNicoll M; García-Pavía P; Lara-Pezzi E Circ Res; 2019 Jul; 125(2):170-183. PubMed ID: 31145021 [TBL] [Abstract][Full Text] [Related]
19. Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Voelkel T; Andresen C; Unger A; Just S; Rottbauer W; Linke WA Biochim Biophys Acta; 2013 Apr; 1833(4):812-22. PubMed ID: 23047121 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of OGFOD1 by Cell Cycle-Dependent Kinase 7/9 Enhances the Transcriptional Activity of RNA Polymerase II in Breast Cancer Cells. Lee HT; Lee IH; Kim JH; Lee S; Kwak S; Suh MY; Hwang IY; Kang BG; Cha SS; Lee BI; Lee SE; Choi J; Roe JS; Cho EJ; Youn HD Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]