These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 31112591)
1. Classification of skin lesions using transfer learning and augmentation with Alex-net. Hosny KM; Kassem MA; Foaud MM PLoS One; 2019; 14(5):e0217293. PubMed ID: 31112591 [TBL] [Abstract][Full Text] [Related]
2. Nevus and melanoma paraconsistent classification. Souza S; Abe JM Stud Health Technol Inform; 2014; 207():244-50. PubMed ID: 25488230 [TBL] [Abstract][Full Text] [Related]
3. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
4. Skin lesion classification with ensembles of deep convolutional neural networks. Harangi B J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029 [TBL] [Abstract][Full Text] [Related]
5. Melanoma detection by analysis of clinical images using convolutional neural network. Nasr-Esfahani E; Samavi S; Karimi N; Soroushmehr SM; Jafari MH; Ward K; Najarian K Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1373-1376. PubMed ID: 28268581 [TBL] [Abstract][Full Text] [Related]
6. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Wahba MA; Ashour AS; Guo Y; Napoleon SA; Elnaby MMA Comput Methods Programs Biomed; 2018 Oct; 165():163-174. PubMed ID: 30337071 [TBL] [Abstract][Full Text] [Related]
7. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
8. Fusing fine-tuned deep features for skin lesion classification. Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354 [TBL] [Abstract][Full Text] [Related]
9. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Iqbal I; Younus M; Walayat K; Kakar MU; Ma J Comput Med Imaging Graph; 2021 Mar; 88():101843. PubMed ID: 33445062 [TBL] [Abstract][Full Text] [Related]
10. Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions. Foahom Gouabou AC; Collenne J; Monnier J; Iguernaissi R; Damoiseaux JL; Moudafi A; Merad D Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430315 [TBL] [Abstract][Full Text] [Related]
12. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Al-Masni MA; Kim DH; Kim TS Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084 [TBL] [Abstract][Full Text] [Related]
13. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556 [TBL] [Abstract][Full Text] [Related]
14. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Jinnai S; Yamazaki N; Hirano Y; Sugawara Y; Ohe Y; Hamamoto R Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751349 [TBL] [Abstract][Full Text] [Related]
15. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Hekler A; Utikal JS; Enk AH; Solass W; Schmitt M; Klode J; Schadendorf D; Sondermann W; Franklin C; Bestvater F; Flaig MJ; Krahl D; von Kalle C; Fröhling S; Brinker TJ Eur J Cancer; 2019 Sep; 118():91-96. PubMed ID: 31325876 [TBL] [Abstract][Full Text] [Related]
16. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489 [TBL] [Abstract][Full Text] [Related]
17. Reduction of overfitting on the highly imbalanced ISIC-2019 skin dataset using deep learning frameworks. Gayatri E; Aarthy SL J Xray Sci Technol; 2024; 32(1):53-68. PubMed ID: 38189730 [TBL] [Abstract][Full Text] [Related]
18. Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet. Hosny KM; Kassem MA; Fouad MM J Digit Imaging; 2020 Oct; 33(5):1325-1334. PubMed ID: 32607904 [TBL] [Abstract][Full Text] [Related]
19. Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin. Iyatomi H; Oka H; Celebi ME; Ogawa K; Argenziano G; Soyer HP; Koga H; Saida T; Ohara K; Tanaka M J Invest Dermatol; 2008 Aug; 128(8):2049-54. PubMed ID: 18323788 [TBL] [Abstract][Full Text] [Related]
20. Pathologist-level classification of histopathological melanoma images with deep neural networks. Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]