These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31112768)

  • 1. Application of interpretable artificial neural networks to early monoclonal antibodies development.
    Gentiluomo L; Roessner D; Augustijn D; Svilenov H; Kulakova A; Mahapatra S; Winter G; Streicher W; Rinnan Å; Peters GHJ; Harris P; Frieß W
    Eur J Pharm Biopharm; 2019 Aug; 141():81-89. PubMed ID: 31112768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of machine learning to predict monomer retention of therapeutic proteins after long term storage.
    Gentiluomo L; Roessner D; Frieß W
    Int J Pharm; 2020 Mar; 577():119039. PubMed ID: 31953088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Peptide Microarrays for Fast and Informative Profiling of Therapeutic Antibody Formulation Conditions.
    Austerberry J; Edwards J; Eyes T; Derrick JP
    Mol Pharm; 2021 Nov; 18(11):4131-4139. PubMed ID: 34658237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage.
    Svilenov H; Winter G
    Eur J Pharm Biopharm; 2019 Apr; 137():131-139. PubMed ID: 30818009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-ramped studies on the aggregation, unfolding, and interaction of a therapeutic monoclonal antibody.
    Menzen T; Friess W
    J Pharm Sci; 2014 Feb; 103(2):445-55. PubMed ID: 24382634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design.
    Cloutier TK; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2020 Sep; 17(9):3589-3599. PubMed ID: 32794710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Neural Networks in Computer-Aided Drug Design: An Overview of Recent Advances.
    Cheirdaris DG
    Adv Exp Med Biol; 2020; 1194():115-125. PubMed ID: 32468528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neuron-glia networks learning approach based on cooperative coevolution.
    Mesejo P; Ibáñez O; Fernández-Blanco E; Cedrón F; Pazos A; Porto-Pazos AB
    Int J Neural Syst; 2015 Jun; 25(4):1550012. PubMed ID: 25843127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developability assessment for monoclonal antibody drug candidates: a case study.
    Garripelli VK; Wu Z; Gupta S
    Pharm Dev Technol; 2021 Jan; 26(1):11-20. PubMed ID: 32986499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing Therapeutic Protein Discovery and Development through Comprehensive Computational and Biophysical Characterization.
    Gentiluomo L; Svilenov HL; Augustijn D; El Bialy I; Greco ML; Kulakova A; Indrakumar S; Mahapatra S; Morales MM; Pohl C; Roche A; Tosstorff A; Curtis R; Derrick JP; Nørgaard A; Khan TA; Peters GHJ; Pluen A; Rinnan Å; Streicher WW; van der Walle CF; Uddin S; Winter G; Roessner D; Harris P; Frieß W
    Mol Pharm; 2020 Feb; 17(2):426-440. PubMed ID: 31790599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis.
    Fei Y; Gao K; Li WQ
    Pancreatology; 2018 Dec; 18(8):892-899. PubMed ID: 30268673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary artificial neural networks as tools for predicting the internal structure of microemulsions.
    Gasperlin M; Podlogar F; Sibanc R
    J Pharm Pharm Sci; 2008; 11(1):67-76. PubMed ID: 18445365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Primary Drying in Lyophilization During Early-Phase Drug Development Using a Definitive Screening Design With Formulation and Process Factors.
    Goldman JM; More HT; Yee O; Borgeson E; Remy B; Rowe J; Sadineni V
    J Pharm Sci; 2018 Oct; 107(10):2592-2600. PubMed ID: 29890172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features.
    Singh O; Su EC
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):478. PubMed ID: 28155640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.
    Liu Y; Yang J; Huang Y; Xu L; Li S; Qi M
    Comput Intell Neurosci; 2015; 2015():297672. PubMed ID: 26681933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Next Era: Deep Learning in Pharmaceutical Research.
    Ekins S
    Pharm Res; 2016 Nov; 33(11):2594-603. PubMed ID: 27599991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neural networks for bilateral prediction of formulation parameters and drug release profiles from cochlear implant coatings fabricated as porous monolithic devices based on silicone rubber.
    Nemati P; Imani M; Farahmandghavi F; Mirzadeh H; Marzban-Rad E; Nasrabadi AM
    J Pharm Pharmacol; 2014 May; 66(5):624-38. PubMed ID: 24341981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.