These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31112787)

  • 1. The relation between brain signal complexity and task difficulty on an executive function task.
    Grundy JG; Barker RM; Anderson JAE; Shedden JM
    Neuroimage; 2019 Sep; 198():104-113. PubMed ID: 31112787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring adolescent cognitive control in a combined interference switching task.
    Mennigen E; Rodehacke S; Müller KU; Ripke S; Goschke T; Smolka MN
    Neuropsychologia; 2014 Aug; 61():175-89. PubMed ID: 24971708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contextually sensitive power changes across multiple frequency bands underpin cognitive control.
    Cooper PS; Darriba Á; Karayanidis F; Barceló F
    Neuroimage; 2016 May; 132():499-511. PubMed ID: 26975557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Earlier and more distributed neural networks for bilinguals than monolinguals during switching.
    Timmer K; Grundy JG; Bialystok E
    Neuropsychologia; 2017 Nov; 106():245-260. PubMed ID: 28943364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.
    Nashiro K; Qin S; O'Connell MA; Basak C
    Neuroimage; 2018 May; 172():146-161. PubMed ID: 29414492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparatory Engagement of Cognitive Control Networks Increases Late in Childhood.
    Church JA; Bunge SA; Petersen SE; Schlaggar BL
    Cereb Cortex; 2017 Mar; 27(3):2139-2153. PubMed ID: 26972753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.
    Ardid S; Wang XJ
    J Neurosci; 2013 Dec; 33(50):19504-17. PubMed ID: 24336717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional costs of visually guided walking: effects of age, executive function and stepping-task demands.
    Mazaheri M; Roerdink M; Bood RJ; Duysens J; Beek PJ; Peper CL
    Gait Posture; 2014; 40(1):182-6. PubMed ID: 24767613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential contribution of task conflicts to task switch cost and task mixing cost in alternating runs and cued task-switching: evidence from ex-Gaussian modeling of reaction time distributions.
    Shahar N; Meiran N
    Psychol Res; 2015 Mar; 79(2):259-66. PubMed ID: 24760460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional neuroimaging indicators of successful executive control in the oldest old.
    Rosano C; Aizenstein H; Cochran J; Saxton J; De Kosky S; Newman AB; Kuller LH; Lopez OL; Carter CS
    Neuroimage; 2005 Dec; 28(4):881-9. PubMed ID: 16226041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The minimum entropy principle and task performance.
    Guastello SJ; Gorin H; Huschen S; Peters NE; Fabisch M; Poston K; Weinberger K
    Nonlinear Dynamics Psychol Life Sci; 2013 Jul; 17(3):405-23. PubMed ID: 23735494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.
    Zhou D; Zhou J; Chen H; Manor B; Lin J; Zhang J
    Exp Brain Res; 2015 Aug; 233(8):2401-9. PubMed ID: 25963755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-task performance reveals increased involvement of executive control in fine motor sequencing in healthy aging.
    Fraser SA; Li KZ; Penhune VB
    J Gerontol B Psychol Sci Soc Sci; 2010 Sep; 65(5):526-35. PubMed ID: 20478900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditioning task switching behavior.
    Braem S
    Cognition; 2017 Sep; 166():272-276. PubMed ID: 28595140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.