These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31112807)

  • 41. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
    Li M; Yang Y; Ling Y; Qiu W; Wang F; Liu T; Song Y; Liu X; Fang P; Tong Y; Li Y
    Nano Lett; 2017 Apr; 17(4):2490-2495. PubMed ID: 28334530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interfacial growth of the optimal BiVO
    Kumbhar VS; Lee H; Lee J; Lee K
    J Colloid Interface Sci; 2019 Dec; 557():478-487. PubMed ID: 31541917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.
    Xu M; Da P; Wu H; Zhao D; Zheng G
    Nano Lett; 2012 Mar; 12(3):1503-8. PubMed ID: 22364360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled charge-dynamics in cobalt-doped TiO
    Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z
    J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BiVO₄ Nanostructures for Photoelectrochemical (PEC) Solar Water Splitting Applications.
    Rani BJ; Praveenkumar M; Ravichandran S; Ravi G; Guduru RK; Yuvakkumar R
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7427-7435. PubMed ID: 31039908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation.
    Chen C; Lu Y; Fan R; Shen M
    ChemSusChem; 2020 Aug; 13(15):3893-3900. PubMed ID: 32400054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ZnFe
    She X; Zhang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):211. PubMed ID: 28340528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cobalt-doped double-layer α-Fe
    Bai L; Wang J; Yang K; Yan Y; Jin M; Cui D; Zhao M
    Discov Nano; 2023 Feb; 18(1):10. PubMed ID: 36764982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cu-Ion-Implanted and Polymeric Carbon Nitride-Decorated TiO
    Wang L; Si W; Ye Y; Wang S; Hou F; Hou X; Cai H; Dou SX; Liang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44184-44194. PubMed ID: 34499482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe
    Li F; Li J; Zhang J; Gao L; Long X; Hu Y; Li S; Jin J; Ma J
    ChemSusChem; 2018 Jul; 11(13):2156-2164. PubMed ID: 29768719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction.
    Wang C; Wei S; Li F; Long X; Wang T; Wang P; Li S; Ma J; Jin J
    Nanoscale; 2020 Feb; 12(5):3259-3266. PubMed ID: 31970358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulating the Charge Migration in CuInSe
    Wang C; Sun S; Zhang H; Zhang J; Li C; Chen W; Li S
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300034. PubMed ID: 37088791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fe/W Co-Doped BiVO
    Jiao Z; Zheng J; Feng C; Wang Z; Wang X; Lu G; Bi Y
    ChemSusChem; 2016 Oct; 9(19):2824-2831. PubMed ID: 27572550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation.
    Talibawo J; Kyesmen PI; Cyulinyana MC; Diale M
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.