BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 31112866)

  • 21. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma.
    Lucarelli G; Rutigliano M; Sallustio F; Ribatti D; Giglio A; Lepore Signorile M; Grossi V; Sanese P; Napoli A; Maiorano E; Bianchi C; Perego RA; Ferro M; Ranieri E; Serino G; Bell LN; Ditonno P; Simone C; Battaglia M
    Aging (Albany NY); 2018 Dec; 10(12):3957-3985. PubMed ID: 30538212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A transgenic mouse expressing miR-210 in proximal tubule cells shows mitochondrial alteration: possible association of miR-210 with a shift in energy metabolism.
    Nakada C; Hijiya N; Tsukamoto Y; Yano S; Kai T; Uchida T; Kimoto M; Takahashi M; Daa T; Matsuura K; Shin T; Mimata H; Moriyama M
    J Pathol; 2020 May; 251(1):12-25. PubMed ID: 32073141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dicer is down-regulated in clear cell renal cell carcinoma and in vitro Dicer knockdown enhances malignant phenotype transformation.
    Ma X; Fan Y; Gao Y; Zhang Y; Huang Q; Ai Q; Ni D; Chen W; Zhang P; Song E; Wang B; Shi T; Zheng T; Zhang X
    Urol Oncol; 2014 Jan; 32(1):46.e9-17. PubMed ID: 24094887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial metabolic reprogramming by SIRT3 regulation ameliorates drug resistance in renal cell carcinoma.
    Gu YR; Kim J; Na JC; Han WK
    PLoS One; 2022; 17(6):e0269432. PubMed ID: 35671305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma.
    Huang J; Kong W; Zhang J; Chen Y; Xue W; Liu D; Huang Y
    Int J Oncol; 2016 Oct; 49(4):1569-75. PubMed ID: 27431728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic identification of angiomotin by ProteomeLab PF-2D and correlation with clinical outcome in human clear cell renal cell carcinoma.
    Yang J; Liu P; Tian M; Li Y; Chen W; Li X
    Int J Oncol; 2013 Jun; 42(6):2078-86. PubMed ID: 23588948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphoinositide-dependent kinase 1-associated glycolysis is regulated by miR-409-3p in clear cell renal cell carcinoma.
    Wang Y; He Y; Bai H; Dang Y; Gao J; Lv P
    J Cell Biochem; 2019 Jan; 120(1):126-134. PubMed ID: 30218446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor-associated Macrophage-derived Interleukin-23 Interlinks Kidney Cancer Glutamine Addiction with Immune Evasion.
    Fu Q; Xu L; Wang Y; Jiang Q; Liu Z; Zhang J; Zhou Q; Zeng H; Tong S; Wang T; Qi Y; Hu B; Fu H; Xie H; Zhou L; Chang Y; Zhu Y; Dai B; Zhang W; Xu J
    Eur Urol; 2019 May; 75(5):752-763. PubMed ID: 30293904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycolysis-Related Genes Serve as Potential Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma.
    Zhang Y; Chen M; Liu M; Xu Y; Wu G
    Oxid Med Cell Longev; 2021; 2021():6699808. PubMed ID: 33564363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma.
    Qiu B; Ackerman D; Sanchez DJ; Li B; Ochocki JD; Grazioli A; Bobrovnikova-Marjon E; Diehl JA; Keith B; Simon MC
    Cancer Discov; 2015 Jun; 5(6):652-67. PubMed ID: 25829424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic signatures of renal cell carcinoma.
    Lim HY; Yip YM; Chiong E; Tiong HY; Halliwell B; Esuvaranathan K; Wong KP
    Biochem Biophys Res Commun; 2015 May; 460(4):938-43. PubMed ID: 25839656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis.
    Ma Y; Qi Y; Wang L; Zheng Z; Zhang Y; Zheng J
    Free Radic Biol Med; 2019 Apr; 134():458-467. PubMed ID: 30703481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.
    Lucarelli G; Galleggiante V; Rutigliano M; Sanguedolce F; Cagiano S; Bufo P; Lastilla G; Maiorano E; Ribatti D; Giglio A; Serino G; Vavallo A; Bettocchi C; Selvaggi FP; Battaglia M; Ditonno P
    Oncotarget; 2015 May; 6(15):13371-86. PubMed ID: 25945836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The two glycolytic markers GLUT1 and MCT1 correlate with tumor grade and survival in clear-cell renal cell carcinoma.
    Ambrosetti D; Dufies M; Dadone B; Durand M; Borchiellini D; Amiel J; Pouyssegur J; Rioux-Leclercq N; Pages G; Burel-Vandenbos F; Mazure NM
    PLoS One; 2018; 13(2):e0193477. PubMed ID: 29481555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MFN2 suppresses the accumulation of lipid droplets and the progression of clear cell renal cell carcinoma.
    Cai Z; Luo W; Wang H; Zhu R; Yuan Y; Zhan X; Xie M; Zhuang H; Chen H; Xu Y; Li X; Liu L; Xu G
    Cancer Sci; 2024 Jun; 115(6):1791-1807. PubMed ID: 38480904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma.
    Miess H; Dankworth B; Gouw AM; Rosenfeldt M; Schmitz W; Jiang M; Saunders B; Howell M; Downward J; Felsher DW; Peck B; Schulze A
    Oncogene; 2018 Oct; 37(40):5435-5450. PubMed ID: 29872221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma.
    Neely BA; Wilkins CE; Marlow LA; Malyarenko D; Kim Y; Ignatchenko A; Sasinowska H; Sasinowski M; Nyalwidhe JO; Kislinger T; Copland JA; Drake RR
    PLoS One; 2016; 11(4):e0154074. PubMed ID: 27128972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates Suppressed Glucose Oxidation In Vivo.
    Courtney KD; Bezwada D; Mashimo T; Pichumani K; Vemireddy V; Funk AM; Wimberly J; McNeil SS; Kapur P; Lotan Y; Margulis V; Cadeddu JA; Pedrosa I; DeBerardinis RJ; Malloy CR; Bachoo RM; Maher EA
    Cell Metab; 2018 Nov; 28(5):793-800.e2. PubMed ID: 30146487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.