BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31112928)

  • 21. Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings.
    Manceau A; Merkulova M; Murdzek M; Batanova V; Baran R; Glatzel P; Saikia BK; Paktunc D; Lefticariu L
    Environ Sci Technol; 2018 Sep; 52(18):10286-10296. PubMed ID: 30169032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of environmental factors on the complexation of iron and humic acid.
    Fang K; Yuan D; Zhang L; Feng L; Chen Y; Wang Y
    J Environ Sci (China); 2015 Jan; 27():188-96. PubMed ID: 25597677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenopyrite weathering under conditions of simulated calcareous soil.
    Lara RH; Velázquez LJ; Vazquez-Arenas J; Mallet M; Dossot M; Labastida I; Sosa-Rodríguez FS; Espinosa-Cristóbal LF; Escobedo-Bretado MA; Cruz R
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3681-706. PubMed ID: 26498805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species.
    Demoisson F; Mullet M; Humbert B
    Environ Sci Technol; 2005 Nov; 39(22):8747-52. PubMed ID: 16323772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of pyrite oxidation by iron 8-hydroxyquinoline.
    Lan Y; Huang X; Deng B
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):168-74. PubMed ID: 12115042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.
    Lopez-Arce P; Garcia-Guinea J; Garrido F
    Chemosphere; 2017 Aug; 181():447-460. PubMed ID: 28458220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immobilization of mercury by pyrite (FeS2).
    Bower J; Savage KS; Weinman B; Barnett MO; Hamilton WP; Harper WF
    Environ Pollut; 2008 Nov; 156(2):504-14. PubMed ID: 18367298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alumina inhibits pyrite oxidative dissolution by regulating solid film passivation layer and S, Fe, and Al speciation transformation.
    Liu G; Tang J; Li B; Chen C; Wang X
    Chemosphere; 2024 Mar; 352():141366. PubMed ID: 38311037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reductive biomining of pyrite by methanogens.
    Spietz RL; Payne D; Szilagyi R; Boyd ES
    Trends Microbiol; 2022 Nov; 30(11):1072-1083. PubMed ID: 35624031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative characterization of two natural humic acids in the Pearl River Basin, China and their environmental implications.
    Liu J; Wang J; Chen Y; Lippold H; Lippmann-Pipke J
    J Environ Sci (China); 2010; 22(11):1695-702. PubMed ID: 21235156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic release from arsenopyrite weathering in acid mine drainage: Kinetics, transformation, and effect of biochar.
    Cen L; Cheng H; Liu Q; Wang S; Wang X
    Environ Int; 2022 Dec; 170():107558. PubMed ID: 36202015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrite formation from FeS and H
    Thiel J; Byrne JM; Kappler A; Schink B; Pester M
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6897-6902. PubMed ID: 30886102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.
    Zhou S; Chen S; Yuan Y; Lu Q
    Sci Rep; 2015 Nov; 5():17067. PubMed ID: 26593782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous geochemical and surface science investigation of the effect of phosphate on pyrite oxidation.
    Elsetinow AR; Schoonen MA; Strongin DR
    Environ Sci Technol; 2001 Jun; 35(11):2252-7. PubMed ID: 11414026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Alorro RD; Yoo K; Raval S; Ito M; Hiroyoshi N
    J Hazard Mater; 2020 Nov; 399():122844. PubMed ID: 32534389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acid rock drainage in Nevado Pastoruri glacier area (Huascarán National Park, Perú): hydrochemical and mineralogical characterization and associated environmental implications.
    Santofimia E; López-Pamo E; Palomino EJ; González-Toril E; Aguilera Á
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25243-25259. PubMed ID: 28929448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals.
    Shi W; Lü C; He J; En H; Gao M; Zhao B; Zhou B; Zhou H; Liu H; Zhang Y
    Ecotoxicol Environ Saf; 2018 Jun; 154():59-68. PubMed ID: 29454987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.