These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 31112930)
1. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Chen X; Li S; Liu Z; Chen Y; Yang H; Wang X; Che Q; Chen W; Chen H Bioresour Technol; 2019 Sep; 287():121493. PubMed ID: 31112930 [TBL] [Abstract][Full Text] [Related]
2. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS. Volli V; Gollakota ARK; Shu CM Sci Total Environ; 2021 Oct; 792():148392. PubMed ID: 34147787 [TBL] [Abstract][Full Text] [Related]
3. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics. Fan H; Gu J; Wang Y; Yuan H; Chen Y; Luo B Waste Manag; 2021 Feb; 121():255-264. PubMed ID: 33388648 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Chen T; Zhang J; Wu J Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484 [TBL] [Abstract][Full Text] [Related]
5. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Wang H; Wang X; Cui Y; Xue Z; Ba Y Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles. Cao X; Zhong L; Peng X; Sun S; Li S; Liu S; Sun R Bioresour Technol; 2014 Mar; 155():21-7. PubMed ID: 24413478 [TBL] [Abstract][Full Text] [Related]
7. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Wu Z; Wang S; Zhao J; Chen L; Meng H Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297 [TBL] [Abstract][Full Text] [Related]
8. Spent lithium-ion battery materials recycling for catalytic pyrolysis or gasification of biomass. Chen L; Wang P; Shen Y; Guo M Bioresour Technol; 2021 Mar; 323():124584. PubMed ID: 33373799 [TBL] [Abstract][Full Text] [Related]
9. Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures. Chang G; Miao P; Yan X; Wang G; Guo Q Bioresour Technol; 2018 Apr; 253():214-219. PubMed ID: 29351874 [TBL] [Abstract][Full Text] [Related]
10. Lignocellulosic biomass-based pyrolysis: A comprehensive review. K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872 [TBL] [Abstract][Full Text] [Related]
11. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Chen WH; Wang CW; Kumar G; Rousset P; Hsieh TH Bioresour Technol; 2018 Jul; 259():469-473. PubMed ID: 29580728 [TBL] [Abstract][Full Text] [Related]
12. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin. Ren Q; Zhao C Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228 [TBL] [Abstract][Full Text] [Related]
13. Effects of torrefaction and densification on switchgrass pyrolysis products. Yang Z; Sarkar M; Kumar A; Tumuluru JS; Huhnke RL Bioresour Technol; 2014 Dec; 174():266-73. PubMed ID: 25463807 [TBL] [Abstract][Full Text] [Related]
14. Fast Pyrolysis of Cellulose and the Effect of a Catalyst on Product Distribution. Sun T; Zhang L; Yang Y; Li Y; Ren S; Dong L; Lei T Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554724 [TBL] [Abstract][Full Text] [Related]
15. Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components. Xu Z; Guo Z; Xie H; Hu Y Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897323 [TBL] [Abstract][Full Text] [Related]
16. Effect of CaO on Pyrolysis Products and Reaction Mechanisms of a Corn Stover. Wang Q; Zhang X; Sun S; Wang Z; Cui D ACS Omega; 2020 May; 5(18):10276-10287. PubMed ID: 32426584 [TBL] [Abstract][Full Text] [Related]
17. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Ding K; Zhong Z; Wang J; Zhang B; Fan L; Liu S; Wang Y; Liu Y; Zhong D; Chen P; Ruan R Bioresour Technol; 2018 Aug; 261():86-92. PubMed ID: 29654998 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Interactions Occurring during the Pyrolysis of Lignocellulosic Biomass. Bielecki M; Zubkova V Molecules; 2023 Jan; 28(2):. PubMed ID: 36677564 [TBL] [Abstract][Full Text] [Related]
20. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass. González-Vila FJ; Tinoco P; Almendros G; Martin F J Agric Food Chem; 2001 Mar; 49(3):1128-31. PubMed ID: 11312823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]