These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31112970)
1. The Short-Term Safety Evaluation of Corneal Crosslinking Agent-Genipin. Song W; Tang Y; Qiao J; Li H; Rong B; Yang S; Wu Y; Yan X Ophthalmic Res; 2019; 62(3):141-149. PubMed ID: 31112970 [TBL] [Abstract][Full Text] [Related]
2. The comparative safety of genipin versus UVA-riboflavin crosslinking of rabbit corneas. Song W; Tang Y; Qiao J; Li H; Rong B; Yang S; Wu Y; Yan X Mol Vis; 2017; 23():504-513. PubMed ID: 28761323 [TBL] [Abstract][Full Text] [Related]
3. A study of corneal structure and biomechanical properties after collagen crosslinking with genipin in rabbit corneas. Tang Y; Song W; Qiao J; Rong B; Wu Y; Yan X Mol Vis; 2019; 25():574-582. PubMed ID: 31673223 [TBL] [Abstract][Full Text] [Related]
4. High-intensity corneal collagen crosslinking with riboflavin and UVA in rat cornea. Zhu Y; Reinach PS; Zhu H; Tan Q; Zheng Q; Qu J; Chen W PLoS One; 2017; 12(6):e0179580. PubMed ID: 28644862 [TBL] [Abstract][Full Text] [Related]
5. Corneal crosslinking with genipin, comparison with UV-riboflavin in ex-vivo model. Avila MY; Gerena VA; Navia JL Mol Vis; 2012; 18():1068-73. PubMed ID: 22605919 [TBL] [Abstract][Full Text] [Related]
6. Long-Term Study of Corneal Stroma and Endothelium on Structure and Cells After Genipin Treatment of Rabbit Corneas. Song W; Cheng Y; Yan X; Yang S Transl Vis Sci Technol; 2021 Apr; 10(5):9. PubMed ID: 34529024 [TBL] [Abstract][Full Text] [Related]
7. Efficacy and Safety of Transglutaminase-Induced Corneal Stiffening in Rabbits. Wu Y; Song W; Tang Y; Elsheikh A; Shao Y; Yan X Transl Vis Sci Technol; 2019 Nov; 8(6):27. PubMed ID: 31853423 [TBL] [Abstract][Full Text] [Related]
8. Continuous-light versus pulsed-light accelerated corneal crosslinking with ultraviolet-A and riboflavin. Zhu Y; Reinach PS; Zhu H; Li L; Yang F; Qu J; Chen W J Cataract Refract Surg; 2018 Mar; 44(3):382-389. PubMed ID: 29703291 [TBL] [Abstract][Full Text] [Related]
9. Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in keratoconus. Bouheraoua N; Jouve L; El Sanharawi M; Sandali O; Temstet C; Loriaut P; Basli E; Borderie V; Laroche L Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7601-9. PubMed ID: 25352122 [TBL] [Abstract][Full Text] [Related]
10. Comparison of 2 Different Methods of Transepithelial Corneal Collagen Cross-Linking: Analysis of Corneal Histology and Hysteresis. Park YM; Kim HY; Lee JS Cornea; 2017 Jul; 36(7):860-865. PubMed ID: 28486315 [TBL] [Abstract][Full Text] [Related]
11. Comparison of transepithelial corneal collagen crosslinking with epithelium-off crosslinking in progressive keratoconus. Kocak I; Aydin A; Kaya F; Koc H J Fr Ophtalmol; 2014 May; 37(5):371-6. PubMed ID: 24679451 [TBL] [Abstract][Full Text] [Related]
12. Refractive improvements and safety with topography-guided corneal crosslinking for keratoconus: 1-year results. Nordström M; Schiller M; Fredriksson A; Behndig A Br J Ophthalmol; 2017 Jul; 101(7):920-925. PubMed ID: 27899371 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the Toxicity/Fixation Balance for Corneal Cross-Linking With Sodium Hydroxymethylglycinate (SMG) and Riboflavin-UVA (CXL) in an Ex Vivo Rabbit Model Using Confocal Laser Scanning Fluorescence Microscopy. Kim SY; Babar N; Munteanu EL; Takaoka A; Zyablitskaya M; Nagasaki T; Trokel SL; Paik DC Cornea; 2016 Apr; 35(4):550-6. PubMed ID: 26807905 [TBL] [Abstract][Full Text] [Related]
14. Morphological and immunohistochemical changes after corneal cross-linking. Messmer EM; Meyer P; Herwig MC; Loeffler KU; Schirra F; Seitz B; Thiel M; Reinhard T; Kampik A; Auw-Haedrich C Cornea; 2013 Feb; 32(2):111-7. PubMed ID: 22580432 [TBL] [Abstract][Full Text] [Related]
15. Matrix-Based Regenerating Agent for Corneal Wound Healing After Collagen Cross-Linking. Hovakimyan M; Stachs O; Céline O; Guthoff RF Cornea; 2016 Dec; 35(12):1638-1643. PubMed ID: 27755188 [TBL] [Abstract][Full Text] [Related]
16. Current concepts in crosslinking thin corneas. Deshmukh R; Hafezi F; Kymionis GD; Kling S; Shah R; Padmanabhan P; Sachdev MS Indian J Ophthalmol; 2019 Jan; 67(1):8-15. PubMed ID: 30574883 [TBL] [Abstract][Full Text] [Related]
17. Can the effect of transepithelial corneal collagen cross-linking be improved by increasing the duration of topical riboflavin application? An in vivo confocal microscopy study. Acar BT; Utine CA; Ozturk V; Acar S; Ciftci F Eye Contact Lens; 2014 Jul; 40(4):207-12. PubMed ID: 24874297 [TBL] [Abstract][Full Text] [Related]
18. Current perspectives on corneal collagen crosslinking (CXL). Subasinghe SK; Ogbuehi KC; Dias GJ Graefes Arch Clin Exp Ophthalmol; 2018 Aug; 256(8):1363-1384. PubMed ID: 29623463 [TBL] [Abstract][Full Text] [Related]
19. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. Touboul D; Efron N; Smadja D; Praud D; Malet F; Colin J J Refract Surg; 2012 Nov; 28(11):769-76. PubMed ID: 23347370 [TBL] [Abstract][Full Text] [Related]
20. Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial. Bikbova G; Bikbov M Acta Ophthalmol; 2016 Nov; 94(7):e600-e606. PubMed ID: 27040458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]