These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 31113380)
1. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. Liu P; Huang R; Hu X; Jia Y; Li J; Luo J; Liu Q; Luo L; Liu G; Chen Z BMC Plant Biol; 2019 May; 19(1):212. PubMed ID: 31113380 [TBL] [Abstract][Full Text] [Related]
2. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity. Jia Y; Li X; Liu Q; Hu X; Li J; Dong R; Liu P; Liu G; Luo L; Chen Z BMC Genomics; 2020 Dec; 21(1):861. PubMed ID: 33272205 [TBL] [Abstract][Full Text] [Related]
3. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
4. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Chen Z; Sun L; Liu P; Liu G; Tian J; Liao H Plant Physiol; 2015 Jan; 167(1):176-88. PubMed ID: 25378694 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. Chen Z; Yan W; Sun L; Tian J; Liao H J Proteomics; 2016 Jun; 143():151-160. PubMed ID: 27045940 [TBL] [Abstract][Full Text] [Related]
6. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. Luo J; Liu Y; Zhang H; Wang J; Chen Z; Luo L; Liu G; Liu P BMC Plant Biol; 2020 Feb; 20(1):85. PubMed ID: 32087672 [TBL] [Abstract][Full Text] [Related]
7. Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes. Inostroza-Blancheteau C; Reyes-Díaz M; Berríos G; Rodrigues-Salvador A; Nunes-Nesi A; Deppe M; Demanet R; Rengel Z; Alberdi M Plant Physiol Biochem; 2017 Apr; 113():89-97. PubMed ID: 28189921 [TBL] [Abstract][Full Text] [Related]
8. Long-term manganese-toxicity-induced alterations of physiology and leaf protein profiles in two Citrus species differing in manganese-tolerance. You X; Yang LT; Qi YP; Guo P; Lai NW; Ye X; Li Q; Chen LS J Plant Physiol; 2017 Nov; 218():249-257. PubMed ID: 28910703 [TBL] [Abstract][Full Text] [Related]
9. Early manganese-toxicity response in Vigna unguiculata L.--a proteomic and transcriptomic study. Führs H; Hartwig M; Molina LE; Heintz D; Van Dorsselaer A; Braun HP; Horst WJ Proteomics; 2008 Jan; 8(1):149-59. PubMed ID: 18095375 [TBL] [Abstract][Full Text] [Related]
10. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Bao G; Zhuo C; Qian C; Xiao T; Guo Z; Lu S Plant Biotechnol J; 2016 Jan; 14(1):206-14. PubMed ID: 25865630 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptome Analysis Reveals Complex Physiological Response and Gene Regulation in Peanut Roots and Leaves under Manganese Toxicity Stress. Liu Y; Zhao M; Chen J; Yang S; Chen J; Xue Y Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674676 [TBL] [Abstract][Full Text] [Related]
12. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. Miao Y; Hu X; Wang L; Schultze-Kraft R; Wang W; Chen Z Plant Physiol Biochem; 2024 Mar; 208():108535. PubMed ID: 38503187 [TBL] [Abstract][Full Text] [Related]
13. Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley. Huang X; Shabala S; Shabala L; Rengel Z; Wu X; Zhang G; Zhou M Plant Biol (Stuttg); 2015 Jan; 17(1):26-33. PubMed ID: 24985051 [TBL] [Abstract][Full Text] [Related]
14. The Stylo Cysteine-Rich Peptide Guo X; Zhu S; Xue Y; Lin Y; Mao J; Li S; Liang C; Lu X; Tian J Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928379 [TBL] [Abstract][Full Text] [Related]
15. SgNramp1, a plasma membrane-localized transporter, involves in manganese uptake in Zou X; Huang R; Wang L; Wang G; Miao Y; Rao I; Liu G; Chen Z Front Plant Sci; 2022; 13():1027551. PubMed ID: 36275523 [TBL] [Abstract][Full Text] [Related]
16. Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato ( Ceballos-Laita L; Gutierrez-Carbonell E; Takahashi D; Lonsdale A; Abadía A; Doblin MS; Bacic A; Uemura M; Abadía J; López-Millán AF Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33238539 [TBL] [Abstract][Full Text] [Related]
17. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity. Zhou CP; Qi YP; You X; Yang LT; Guo P; Ye X; Zhou XX; Ke FJ; Chen LS BMC Genomics; 2013 Sep; 14():621. PubMed ID: 24034812 [TBL] [Abstract][Full Text] [Related]
18. Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1. Sun L; Liang C; Chen Z; Liu P; Tian J; Liu G; Liao H New Phytol; 2014 Apr; 202(1):209-219. PubMed ID: 24325195 [TBL] [Abstract][Full Text] [Related]
19. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Fecht-Christoffers MM; Führs H; Braun HP; Horst WJ Plant Physiol; 2006 Apr; 140(4):1451-63. PubMed ID: 16489137 [TBL] [Abstract][Full Text] [Related]
20. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Liu PD; Xue YB; Chen ZJ; Liu GD; Tian J J Exp Bot; 2016 Jul; 67(14):4141-54. PubMed ID: 27194738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]