These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31113633)

  • 1. Ontogenetic strategies in insect herbivores and their impact on tri-trophic interactions.
    Boege K; Agrawal AA; Thaler JS
    Curr Opin Insect Sci; 2019 Apr; 32():61-67. PubMed ID: 31113633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.
    Wetzel WC; Thaler JS
    Curr Opin Insect Sci; 2016 Apr; 14():25-31. PubMed ID: 27436643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector-borne plant pathogens modify top-down and bottom-up effects on insect herbivores.
    Clark RE; Crowder DW
    Oecologia; 2021 Aug; 196(4):1085-1093. PubMed ID: 34272990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative measure of fitness in tri-trophic interactions and its influence on diet breadth of insect herbivores.
    Vidal MC; Murphy SM
    Ecology; 2018 Dec; 99(12):2681-2691. PubMed ID: 30289561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.
    Katsanis A; Rasmann S; Mooney KA
    PLoS One; 2016; 11(5):e0155716. PubMed ID: 27182598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple interaction types determine the impact of ant predation of caterpillars in a forest community.
    Clark RE; Farkas TE; Lichter-Marck I; Johnson ER; Singer MS
    Ecology; 2016 Dec; 97(12):3379-3388. PubMed ID: 27861790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis.
    Vidal MC; Murphy SM
    Ecol Lett; 2018 Jan; 21(1):138-150. PubMed ID: 29098754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalising indirect defence and resistance of plants.
    Pearse IS; LoPresti E; Schaeffer RN; Wetzel WC; Mooney KA; Ali JG; Ode PJ; Eubanks MD; Bronstein JL; Weber MG
    Ecol Lett; 2020 Jul; 23(7):1137-1152. PubMed ID: 32394591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An omnivore vigour hypothesis? Nutrient availability strengthens herbivore suppression by omnivores across 48 field sites.
    Blubaugh CK
    J Anim Ecol; 2023 Mar; 92(3):751-759. PubMed ID: 36695631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant defenses and predation risk differentially shape patterns of consumption, growth, and digestive efficiency in a guild of leaf-chewing insects.
    Kaplan I; McArt SH; Thaler JS
    PLoS One; 2014; 9(4):e93714. PubMed ID: 24718036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect plant defense against insect herbivores: a review.
    Aljbory Z; Chen MS
    Insect Sci; 2018 Feb; 25(1):2-23. PubMed ID: 28035791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant ontogeny determines strength and associated plant fitness consequences of plant-mediated interactions between herbivores and flower visitors.
    Rusman Q; Lucas-Barbosa D; Hassan K; Poelman EH
    J Ecol; 2020 May; 108(3):1046-1060. PubMed ID: 32421019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herbivore attack in Casearia nitida influenced by plant ontogenetic variation in foliage quality and plant architecture.
    Boege K
    Oecologia; 2005 Mar; 143(1):117-25. PubMed ID: 15742219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection.
    Divekar PA; Narayana S; Divekar BA; Kumar R; Gadratagi BG; Ray A; Singh AK; Rani V; Singh V; Singh AK; Kumar A; Singh RP; Meena RS; Behera TK
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting cascades: insectivorous birds increase pine but not parasitic mistletoe growth.
    Mooney KA; Linhart YB
    J Anim Ecol; 2006 Mar; 75(2):350-7. PubMed ID: 16637988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Insect Herbivores on Plant Populations.
    Myers JH; Sarfraz RM
    Annu Rev Entomol; 2017 Jan; 62():207-230. PubMed ID: 27813663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation.
    Belliure B; Janssen A; Sabelis MW
    Oecologia; 2008 Jul; 156(4):797-806. PubMed ID: 18392858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bird predation enhances tree seedling resistance to insect herbivores in contrasting forest habitats.
    Giffard B; Corcket E; Barbaro L; Jactel H
    Oecologia; 2012 Feb; 168(2):415-24. PubMed ID: 21811874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental gradients and the evolution of tri-trophic interactions.
    Kergunteuil A; Röder G; Rasmann S
    Ecol Lett; 2019 Feb; 22(2):292-301. PubMed ID: 30488660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From plants to birds: higher avian predation rates in trees responding to insect herbivory.
    Mäntylä E; Alessio GA; Blande JD; Heijari J; Holopainen JK; Laaksonen T; Piirtola P; Klemola T
    PLoS One; 2008 Jul; 3(7):e2832. PubMed ID: 18665271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.