BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31113823)

  • 1. Hybrid Assembly of the Genome of the Entomopathogenic Nematode
    Serra L; Macchietto M; Macias-Muñoz A; McGill CJ; Rodriguez IM; Rodriguez B; Murad R; Mortazavi A
    G3 (Bethesda); 2019 Aug; 9(8):2687-2697. PubMed ID: 31113823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete mitochondrial genomes of four entomopathogenic nematode species of the genus Steinernema.
    Kikuchi T; Afrin T; Yoshida M
    Parasit Vectors; 2016 Aug; 9(1):430. PubMed ID: 27494995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signatures of co-evolutionary host-pathogen interactions in the genome of the entomopathogenic nematode Steinernema carpocapsae.
    Flores-Ponce M; Vallebueno-Estrada M; González-Orozco E; Ramos-Aboites HE; García-Chávez JN; Simões N; Montiel R
    BMC Evol Biol; 2017 Apr; 17(1):108. PubMed ID: 28446150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes.
    Roder AC; Stock SP
    J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle.
    Rougon-Cardoso A; Flores-Ponce M; Ramos-Aboites HE; Martínez-Guerrero CE; Hao YJ; Cunha L; Rodríguez-Martínez JA; Ovando-Vázquez C; Bermúdez-Barrientos JR; Abreu-Goodger C; Chavarría-Hernández N; Simões N; Montiel R
    Sci Rep; 2016 Nov; 6():37536. PubMed ID: 27876851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture.
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks.
    Dillman AR; Macchietto M; Porter CF; Rogers A; Williams B; Antoshechkin I; Lee MM; Goodwin Z; Lu X; Lewis EE; Goodrich-Blair H; Stock SP; Adams BJ; Sternberg PW; Mortazavi A
    Genome Biol; 2015 Sep; 16():200. PubMed ID: 26392177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Molecule Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode Model Organism Pristionchus pacificus.
    Rödelsperger C; Meyer JM; Prabh N; Lanz C; Bemm F; Sommer RJ
    Cell Rep; 2017 Oct; 21(3):834-844. PubMed ID: 29045848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae.
    Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C
    Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postembryonic Ventral Nerve Cord Development and Gonad Migration in Steinernema carpocapsae.
    Bui HX; Schroeder NE
    J Nematol; 2018 May; 50(1):27-32. PubMed ID: 30335909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogeny of the nematode genus Pristionchus and implications for biodiversity, biogeography and the evolution of hermaphroditism.
    Mayer WE; Herrmann M; Sommer RJ
    BMC Evol Biol; 2007 Jul; 7():104. PubMed ID: 17605767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot
    Usman M; Gulzar S; Wakil W; Piñero JC; Leskey TC; Nixon LJ; Oliveira-Hofman C; Wu S; Shapiro-Ilan D
    J Nematol; 2020; 52():1-9. PubMed ID: 32722904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved method for generating axenic entomopathogenic nematodes.
    Yadav S; Shokal U; Forst S; Eleftherianos I
    BMC Res Notes; 2015 Sep; 8():461. PubMed ID: 26386557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mortality of
    Ruiz-Vega J; Cortés-Martínez CI; Aquino-Bolaños T; Matadamas-Ortíz PT; García-Gutiérrez C; Navarro-Antonio J
    J Nematol; 2020; 52():1-8. PubMed ID: 32726069
    [No Abstract]   [Full Text] [Related]  

  • 16. Infection of the Entomopathogenic Nematode, Steinernema carpocapsae, as Affected by the Presence of Steinernema glaseri.
    Wang XD; Ishibashi N
    J Nematol; 1999 Jun; 31(2):207-11. PubMed ID: 19270891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pristionchus.org: a genome-centric database of the nematode satellite species Pristionchus pacificus.
    Dieterich C; Roeseler W; Sobetzko P; Sommer RJ
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D498-502. PubMed ID: 17062617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus.
    Santhi VS; Ment D; Faigenboim A; Salame L; Soroker V; Hetzroni A; Glazer I
    Mol Biochem Parasitol; 2021 Jan; 241():111345. PubMed ID: 33290763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying the Symbiotic Bacterium
    Stilwell MD; Cao M; Goodrich-Blair H; Weibel DB
    mSphere; 2018; 3(1):. PubMed ID: 29299529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.