BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31114072)

  • 21. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance.
    Turney SG; Ahmed M; Chandrasekar I; Wysolmerski RB; Goeckeler ZM; Rioux RM; Whitesides GM; Bridgman PC
    Mol Biol Cell; 2016 Feb; 27(3):500-17. PubMed ID: 26631553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase.
    Ezratty EJ; Partridge MA; Gundersen GG
    Nat Cell Biol; 2005 Jun; 7(6):581-90. PubMed ID: 15895076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions.
    Ciobanasu C; Faivre B; Le Clainche C
    Eur J Cell Biol; 2013; 92(10-11):339-48. PubMed ID: 24252517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction.
    Birukova AA; Adyshev D; Gorshkov B; Bokoch GM; Birukov KG; Verin AD
    Am J Physiol Lung Cell Mol Physiol; 2006 Mar; 290(3):L540-8. PubMed ID: 16257999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MYPT1 regulates contractility and microtubule acetylation to modulate integrin adhesions and matrix assembly.
    Joo EE; Yamada KM
    Nat Commun; 2014 Mar; 5():3510. PubMed ID: 24667306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase.
    Fincham VJ; Brunton VG; Frame MC
    Mol Cell Biol; 2000 Sep; 20(17):6518-36. PubMed ID: 10938128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural basis of the talin-KANK1 interaction that coordinates the actin and microtubule cytoskeletons at focal adhesions.
    Li X; Goult BT; Ballestrem C; Zacharchenko T
    Open Biol; 2023 Jun; 13(6):230058. PubMed ID: 37339751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The small GTPase RhoG regulates microtubule-mediated focal adhesion disassembly.
    Zinn A; Goicoechea SM; Kreider-Letterman G; Maity D; Awadia S; Cedeno-Rosario L; Chen Y; Garcia-Mata R
    Sci Rep; 2019 Mar; 9(1):5163. PubMed ID: 30914742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-muscle myosin IIA is involved in focal adhesion and actin remodelling controlling glucose-stimulated insulin secretion.
    Arous C; Rondas D; Halban PA
    Diabetologia; 2013 Apr; 56(4):792-802. PubMed ID: 23354122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells.
    Vicente-Manzanares M; Newell-Litwa K; Bachir AI; Whitmore LA; Horwitz AR
    J Cell Biol; 2011 Apr; 193(2):381-96. PubMed ID: 21482721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages.
    Linder S; Hüfner K; Wintergerst U; Aepfelbacher M
    J Cell Sci; 2000 Dec; 113 Pt 23():4165-76. PubMed ID: 11069762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis.
    Norwood Toro LE; Wang Y; Condeelis JS; Jones JG; Backer JM; Bresnick AR
    Exp Cell Res; 2018 Sep; 370(2):273-282. PubMed ID: 29953877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The microtubule cytoskeleton participates in control of beta2 integrin avidity.
    Zhou X; Li J; Kucik DF
    J Biol Chem; 2001 Nov; 276(48):44762-9. PubMed ID: 11579083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of microtubules in the control of adhesion-dependent signal transduction.
    Bershadsky A; Chausovsky A; Becker E; Lyubimova A; Geiger B
    Curr Biol; 1996 Oct; 6(10):1279-89. PubMed ID: 8939572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration.
    Du M; Wang G; Ismail TM; Gross S; Fernig DG; Barraclough R; Rudland PS
    J Biol Chem; 2012 May; 287(19):15330-44. PubMed ID: 22399300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src.
    Yamana N; Arakawa Y; Nishino T; Kurokawa K; Tanji M; Itoh RE; Monypenny J; Ishizaki T; Bito H; Nozaki K; Hashimoto N; Matsuda M; Narumiya S
    Mol Cell Biol; 2006 Sep; 26(18):6844-58. PubMed ID: 16943426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility.
    Mason DE; Collins JM; Dawahare JH; Nguyen TD; Lin Y; Voytik-Harbin SL; Zorlutuna P; Yoder MC; Boerckel JD
    J Cell Biol; 2019 Apr; 218(4):1369-1389. PubMed ID: 30737263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constitutive p21-activated kinase (PAK) activation in breast cancer cells as a result of mislocalization of PAK to focal adhesions.
    Stofega MR; Sanders LC; Gardiner EM; Bokoch GM
    Mol Biol Cell; 2004 Jun; 15(6):2965-77. PubMed ID: 15047871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions.
    Eisler SA; Curado F; Link G; Schulz S; Noack M; Steinke M; Olayioye MA; Hausser A
    Elife; 2018 Jul; 7():. PubMed ID: 30028295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Focal adhesions: structure and dynamics.
    Petit V; Thiery JP
    Biol Cell; 2000 Oct; 92(7):477-94. PubMed ID: 11229600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.