These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31114578)

  • 1. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis.
    Magcwebeba T; Dorhoi A; du Plessis N
    Front Immunol; 2019; 10():917. PubMed ID: 31114578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus.
    Dorhoi A; Kotzé LA; Berzofsky JA; Sui Y; Gabrilovich DI; Garg A; Hafner R; Khader SA; Schaible UE; Kaufmann SH; Walzl G; Lutz MB; Mahon RN; Ostrand-Rosenberg S; Bishai W; du Plessis N
    J Clin Invest; 2020 Jun; 130(6):2789-2799. PubMed ID: 32420917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts.
    Kotzé LA; Young C; Leukes VN; John V; Fang Z; Walzl G; Lutz MB; du Plessis N
    EBioMedicine; 2020 Mar; 53():102670. PubMed ID: 32113158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to
    Namdev P; Patel S; Sparling B; Garg A
    Front Immunol; 2021; 12():647019. PubMed ID: 33995365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis.
    Du Plessis N; Jacobs R; Gutschmidt A; Fang Z; van Helden PD; Lutz MB; Hesseling AC; Walzl G
    Eur J Immunol; 2017 Jan; 47(1):107-118. PubMed ID: 27861788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease.
    Grassi G; Vanini V; De Santis F; Romagnoli A; Aiello A; Casetti R; Cimini E; Bordoni V; Notari S; Cuzzi G; Mosti S; Gualano G; Palmieri F; Fraziano M; Goletti D; Agrati C; Sacchi A
    Front Immunol; 2021; 12():594376. PubMed ID: 33981297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational Potential of Therapeutics Targeting Regulatory Myeloid Cells in Tuberculosis.
    du Plessis N; Kotze LA; Leukes V; Walzl G
    Front Cell Infect Microbiol; 2018; 8():332. PubMed ID: 30298121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid-Derived Suppressor Cells as Target of Phosphodiesterase-5 Inhibitors in Host-Directed Therapeutics for Tuberculosis.
    Leukes V; Walzl G; du Plessis N
    Front Immunol; 2020; 11():451. PubMed ID: 32269568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis.
    Kotze LA; Leukes VN; Fang Z; Lutz MB; Fitzgerald BL; Belisle J; Loxton AG; Walzl G; du Plessis N
    Cell Immunol; 2021 Nov; 369():104426. PubMed ID: 34469846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors.
    Jøntvedt Jørgensen M; Jenum S; Tonby K; Mortensen R; Walzl G; Du Plessis N; Dyrhol-Riise AM
    J Leukoc Biol; 2021 Jul; 110(1):177-186. PubMed ID: 33155730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circulating Monocyte-Like Myeloid Derived Suppressor Cells and CD16 Positive Monocytes Correlate With Immunological Responsiveness of Tuberculosis Patients.
    Amiano NO; Pellegrini JM; Morelli MP; Martinena C; Rolandelli A; Castello FA; Casco N; Ciallella LM; de Casado GC; Armitano R; Stupka J; Gallego C; Palmero DJ; García VE; Tateosian NL
    Front Cell Infect Microbiol; 2022; 12():841741. PubMed ID: 35360105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for
    Munansangu BSM; Kenyon C; Walzl G; Loxton AG; Kotze LA; du Plessis N
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Antimicrobial Activity of Monocytic Myeloid-Derived Suppressor Cells in Infection with Mycobacterium tuberculosis and Human Immunodeficiency Virus.
    Garg A
    Methods Mol Biol; 2021; 2236():115-127. PubMed ID: 33237545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections.
    Tamadaho RSE; Hoerauf A; Layland LE
    Immunobiology; 2018; 223(4-5):432-442. PubMed ID: 29246400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common approach for fighting tuberculosis and leprosy: controlling endoplasmic reticulum stress in myeloid-derived suppressor cells.
    Kumar N; Khan N; Cleveland D; Geiger JD
    Immunotherapy; 2021 Dec; 13(18):1555-1563. PubMed ID: 34743608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability.
    Ribechini E; Eckert I; Beilhack A; Du Plessis N; Walzl G; Schleicher U; Ritter U; Lutz MB
    JCI Insight; 2019 Jun; 5(13):. PubMed ID: 31162143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Host-Directed Therapy for Tuberculosis by Depletion of Myeloid-Derived Suppressor Cells and Related Cells Using a Diphtheria Toxin Fusion Protein.
    Parveen S; Lun S; Urbanowski ME; Cardin M; Shen J; Murphy JR; Bishai WR
    J Infect Dis; 2021 Dec; 224(11):1962-1972. PubMed ID: 33955457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of Infected Gr-1
    Abdissa K; Nerlich A; Beineke A; Ruangkiattikul N; Pawar V; Heise U; Janze N; Falk C; Bruder D; Schleicher U; Bogdan C; Weiss S; Goethe R
    Front Immunol; 2018; 9():2317. PubMed ID: 30386330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative.
    Karin N
    Front Immunol; 2020; 11():557586. PubMed ID: 33193327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.