BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 31114578)

  • 1. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis.
    Magcwebeba T; Dorhoi A; du Plessis N
    Front Immunol; 2019; 10():917. PubMed ID: 31114578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus.
    Dorhoi A; Kotzé LA; Berzofsky JA; Sui Y; Gabrilovich DI; Garg A; Hafner R; Khader SA; Schaible UE; Kaufmann SH; Walzl G; Lutz MB; Mahon RN; Ostrand-Rosenberg S; Bishai W; du Plessis N
    J Clin Invest; 2020 Jun; 130(6):2789-2799. PubMed ID: 32420917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts.
    Kotzé LA; Young C; Leukes VN; John V; Fang Z; Walzl G; Lutz MB; du Plessis N
    EBioMedicine; 2020 Mar; 53():102670. PubMed ID: 32113158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to
    Namdev P; Patel S; Sparling B; Garg A
    Front Immunol; 2021; 12():647019. PubMed ID: 33995365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis.
    Du Plessis N; Jacobs R; Gutschmidt A; Fang Z; van Helden PD; Lutz MB; Hesseling AC; Walzl G
    Eur J Immunol; 2017 Jan; 47(1):107-118. PubMed ID: 27861788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease.
    Grassi G; Vanini V; De Santis F; Romagnoli A; Aiello A; Casetti R; Cimini E; Bordoni V; Notari S; Cuzzi G; Mosti S; Gualano G; Palmieri F; Fraziano M; Goletti D; Agrati C; Sacchi A
    Front Immunol; 2021; 12():594376. PubMed ID: 33981297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational Potential of Therapeutics Targeting Regulatory Myeloid Cells in Tuberculosis.
    du Plessis N; Kotze LA; Leukes V; Walzl G
    Front Cell Infect Microbiol; 2018; 8():332. PubMed ID: 30298121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid-Derived Suppressor Cells as Target of Phosphodiesterase-5 Inhibitors in Host-Directed Therapeutics for Tuberculosis.
    Leukes V; Walzl G; du Plessis N
    Front Immunol; 2020; 11():451. PubMed ID: 32269568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis.
    Kotze LA; Leukes VN; Fang Z; Lutz MB; Fitzgerald BL; Belisle J; Loxton AG; Walzl G; du Plessis N
    Cell Immunol; 2021 Nov; 369():104426. PubMed ID: 34469846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors.
    Jøntvedt Jørgensen M; Jenum S; Tonby K; Mortensen R; Walzl G; Du Plessis N; Dyrhol-Riise AM
    J Leukoc Biol; 2021 Jul; 110(1):177-186. PubMed ID: 33155730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circulating Monocyte-Like Myeloid Derived Suppressor Cells and CD16 Positive Monocytes Correlate With Immunological Responsiveness of Tuberculosis Patients.
    Amiano NO; Pellegrini JM; Morelli MP; Martinena C; Rolandelli A; Castello FA; Casco N; Ciallella LM; de Casado GC; Armitano R; Stupka J; Gallego C; Palmero DJ; García VE; Tateosian NL
    Front Cell Infect Microbiol; 2022; 12():841741. PubMed ID: 35360105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for
    Munansangu BSM; Kenyon C; Walzl G; Loxton AG; Kotze LA; du Plessis N
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Antimicrobial Activity of Monocytic Myeloid-Derived Suppressor Cells in Infection with Mycobacterium tuberculosis and Human Immunodeficiency Virus.
    Garg A
    Methods Mol Biol; 2021; 2236():115-127. PubMed ID: 33237545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections.
    Tamadaho RSE; Hoerauf A; Layland LE
    Immunobiology; 2018; 223(4-5):432-442. PubMed ID: 29246400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common approach for fighting tuberculosis and leprosy: controlling endoplasmic reticulum stress in myeloid-derived suppressor cells.
    Kumar N; Khan N; Cleveland D; Geiger JD
    Immunotherapy; 2021 Dec; 13(18):1555-1563. PubMed ID: 34743608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability.
    Ribechini E; Eckert I; Beilhack A; Du Plessis N; Walzl G; Schleicher U; Ritter U; Lutz MB
    JCI Insight; 2019 Jun; 5(13):. PubMed ID: 31162143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Host-Directed Therapy for Tuberculosis by Depletion of Myeloid-Derived Suppressor Cells and Related Cells Using a Diphtheria Toxin Fusion Protein.
    Parveen S; Lun S; Urbanowski ME; Cardin M; Shen J; Murphy JR; Bishai WR
    J Infect Dis; 2021 Dec; 224(11):1962-1972. PubMed ID: 33955457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of Infected Gr-1
    Abdissa K; Nerlich A; Beineke A; Ruangkiattikul N; Pawar V; Heise U; Janze N; Falk C; Bruder D; Schleicher U; Bogdan C; Weiss S; Goethe R
    Front Immunol; 2018; 9():2317. PubMed ID: 30386330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative.
    Karin N
    Front Immunol; 2020; 11():557586. PubMed ID: 33193327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.