BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31114910)

  • 1. RAD51 and mitotic function of mus81 are essential for recovery from low-dose of camptothecin in the absence of the WRN exonuclease.
    Aiello FA; Palma A; Malacaria E; Zheng L; Campbell JL; Shen B; Franchitto A; Pichierri P
    Nucleic Acids Res; 2019 Jul; 47(13):6796-6810. PubMed ID: 31114910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbed replication induced genome wide or at common fragile sites is differently managed in the absence of WRN.
    Murfuni I; De Santis A; Federico M; Bignami M; Pichierri P; Franchitto A
    Carcinogenesis; 2012 Sep; 33(9):1655-63. PubMed ID: 22689923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation.
    Iannascoli C; Palermo V; Murfuni I; Franchitto A; Pichierri P
    Nucleic Acids Res; 2015 Nov; 43(20):9788-803. PubMed ID: 26275776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class I Histone Deacetylase HDAC1 and WRN RECQ Helicase Contribute Additively to Protect Replication Forks upon Hydroxyurea-induced Arrest.
    Kehrli K; Phelps M; Lazarchuk P; Chen E; Monnat R; Sidorova JM
    J Biol Chem; 2016 Nov; 291(47):24487-24503. PubMed ID: 27672210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes.
    Patro BS; Frøhlich R; Bohr VA; Stevnsner T
    J Cell Sci; 2011 Dec; 124(Pt 23):3967-79. PubMed ID: 22159421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery.
    Ammazzalorso F; Pirzio LM; Bignami M; Franchitto A; Pichierri P
    EMBO J; 2010 Sep; 29(18):3156-69. PubMed ID: 20802463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway.
    Franchitto A; Pirzio LM; Prosperi E; Sapora O; Bignami M; Pichierri P
    J Cell Biol; 2008 Oct; 183(2):241-52. PubMed ID: 18852298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHOSPHORYLATION-DEPENDENT ASSOCIATION OF WRN WITH RPA IS REQUIRED FOR RECOVERY OF REPLICATION FORKS STALLED AT SECONDARY DNA STRUCTURES.
    Noto A; Valenzisi P; Fratini F; Kulikowicz T; Sommers JA; Di Feo F; Palermo V; Semproni M; Crescenzi M; Brosh RM; Franchitto A; Pichierri P
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes.
    Regairaz M; Zhang YW; Fu H; Agama KK; Tata N; Agrawal S; Aladjem MI; Pommier Y
    J Cell Biol; 2011 Nov; 195(5):739-49. PubMed ID: 22123861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonenzymatic role for WRN in preserving nascent DNA strands after replication stress.
    Su F; Mukherjee S; Yang Y; Mori E; Bhattacharya S; Kobayashi J; Yannone SM; Chen DJ; Asaithamby A
    Cell Rep; 2014 Nov; 9(4):1387-401. PubMed ID: 25456133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Drosophila Werner exonuclease participates in an exonuclease-independent response to replication stress.
    Bolterstein E; Rivero R; Marquez M; McVey M
    Genetics; 2014 Jun; 197(2):643-52. PubMed ID: 24709634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis.
    Di Marco S; Hasanova Z; Kanagaraj R; Chappidi N; Altmannova V; Menon S; Sedlackova H; Langhoff J; Surendranath K; Hühn D; Bhowmick R; Marini V; Ferrari S; Hickson ID; Krejci L; Janscak P
    Mol Cell; 2017 Jun; 66(5):658-671.e8. PubMed ID: 28575661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells.
    Datta A; Biswas K; Sommers JA; Thompson H; Awate S; Nicolae CM; Thakar T; Moldovan GL; Shoemaker RH; Sharan SK; Brosh RM
    Nat Commun; 2021 Nov; 12(1):6561. PubMed ID: 34772932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Werner Syndrome Protein and DNA Replication.
    Mukherjee S; Sinha D; Bhattacharya S; Srinivasan K; Abdisalaam S; Asaithamby A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA.
    Shen JC; Loeb LA
    Nucleic Acids Res; 2000 Sep; 28(17):3260-8. PubMed ID: 10954593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ.
    Kamath-Loeb AS; Shen JC; Schmitt MW; Loeb LA
    J Biol Chem; 2012 Apr; 287(15):12480-90. PubMed ID: 22351772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.
    Murphy AK; Fitzgerald M; Ro T; Kim JH; Rabinowitsch AI; Chowdhury D; Schildkraut CL; Borowiec JA
    J Cell Biol; 2014 Aug; 206(4):493-507. PubMed ID: 25113031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Werner syndrome helicase activity is essential in maintaining fragile site stability.
    Pirzio LM; Pichierri P; Bignami M; Franchitto A
    J Cell Biol; 2008 Jan; 180(2):305-14. PubMed ID: 18209099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-dependent degradation of single-stranded 3' ends by the Werner syndrome protein (WRN): implications for spatial orientation and coordinated 3' to 5' movement of its ATPase/helicase and exonuclease domains.
    Machwe A; Xiao L; Orren DK
    BMC Mol Biol; 2006 Feb; 7():6. PubMed ID: 16503984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    EMBO J; 2016 Jul; 35(13):1437-51. PubMed ID: 27242363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.