These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31114911)

  • 1. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei.
    Béguin P; Chekli Y; Sezonov G; Forterre P; Krupovic M
    Nucleic Acids Res; 2019 Jul; 47(12):6386-6395. PubMed ID: 31114911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications.
    Hickman AB; Dyda F
    Nucleic Acids Res; 2015 Dec; 43(22):10576-87. PubMed ID: 26573596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems.
    Béguin P; Charpin N; Koonin EV; Forterre P; Krupovic M
    Nucleic Acids Res; 2016 Dec; 44(21):10367-10376. PubMed ID: 27655632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence specific integration by the family 1 casposase from Candidatus Nitrosopumilus koreensis AR1.
    Wang X; Yuan Q; Zhang W; Ji S; Lv Y; Ren K; Lu M; Xiao Y
    Nucleic Acids Res; 2021 Sep; 49(17):9938-9952. PubMed ID: 34428286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery.
    Krupovic M; Béguin P; Koonin EV
    Curr Opin Microbiol; 2017 Aug; 38():36-43. PubMed ID: 28472712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas.
    Hickman AB; Kailasan S; Genzor P; Haase AD; Dyda F
    Elife; 2020 Jan; 9():. PubMed ID: 31913120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9.
    Lau CH; Bolt EL
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33289517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity.
    Krupovic M; Makarova KS; Forterre P; Prangishvili D; Koonin EV
    BMC Biol; 2014 May; 12():36. PubMed ID: 24884953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity.
    Krupovic M; Shmakov S; Makarova KS; Forterre P; Koonin EV
    Genome Biol Evol; 2016 Jan; 8(2):375-86. PubMed ID: 26764427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon.
    Gehlert FO; Nickel L; Vakirlis N; Hammerschmidt K; Vargas Gebauer HI; Kießling C; Kupczok A; Schmitz RA
    Nucleic Acids Res; 2023 Jul; 51(13):6927-6943. PubMed ID: 37254817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spermidine strongly increases the fidelity of
    Plateau P; Moch C; Blanquet S
    J Biol Chem; 2019 Jul; 294(29):11311-11322. PubMed ID: 31171718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease.
    Hickman AB; Dyda F
    Mob DNA; 2014; 5():23. PubMed ID: 25180049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Motifs and an Accessory CRISPR Factor Determine Cas1 Binding and Integration Activity in
    Liu T; Xu Y; Wang X; Ye Q; Liu Z; Zhang Z; Liu J; Yang Y; Peng X; Peng N
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-Specific Recombination by SSV2 Integrase: Substrate Requirement and Domain Functions.
    Zhan Z; Zhou J; Huang L
    J Virol; 2015 Nov; 89(21):10934-44. PubMed ID: 26292330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
    Moch C; Fromant M; Blanquet S; Plateau P
    Nucleic Acids Res; 2017 Mar; 45(5):2714-2723. PubMed ID: 28034956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foreign DNA capture during CRISPR-Cas adaptive immunity.
    Nuñez JK; Harrington LB; Kranzusch PJ; Engelman AN; Doudna JA
    Nature; 2015 Nov; 527(7579):535-8. PubMed ID: 26503043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
    Fagerlund RD; Wilkinson ME; Klykov O; Barendregt A; Pearce FG; Kieper SN; Maxwell HWR; Capolupo A; Heck AJR; Krause KL; Bostina M; Scheltema RA; Staals RHJ; Fineran PC
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5122-E5128. PubMed ID: 28611213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time observation of CRISPR spacer acquisition by Cas1-Cas2 integrase.
    Budhathoki JB; Xiao Y; Schuler G; Hu C; Cheng A; Ding F; Ke A
    Nat Struct Mol Biol; 2020 May; 27(5):489-499. PubMed ID: 32367067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.