BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31114917)

  • 1. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4.
    Perepelytsya S; Uličný J; Laaksonen A; Mocci F
    Nucleic Acids Res; 2019 Jul; 47(12):6084-6097. PubMed ID: 31114917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding sites of the polyamines putrescine, cadaverine, spermidine and spermine on A- and B-DNA located by simulated annealing.
    Bryson K; Greenall RJ
    J Biomol Struct Dyn; 2000 Dec; 18(3):393-412. PubMed ID: 11149516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.
    Bignon E; Chan CH; Morell C; Monari A; Ravanat JL; Dumont E
    Chemistry; 2017 Sep; 23(52):12845-12852. PubMed ID: 28815856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman study of the interaction between polyamines and a GC oligonucleotide.
    Ruiz-Chica J; Medina MA; Sánchez-Jiménez F; Ramírez FJ
    Biochem Biophys Res Commun; 2001 Jul; 285(2):437-46. PubMed ID: 11444862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines.
    Ruiz-Chica J; Medina MA; Sánchez-Jiménez F; Ramírez FJ
    Biophys J; 2001 Jan; 80(1):443-54. PubMed ID: 11159415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: diffusion and averaged binding of water and cations.
    Korolev N; Lyubartsev AP; Laaksonen A; Nordenskiöld L
    Nucleic Acids Res; 2003 Oct; 31(20):5971-81. PubMed ID: 14530445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation study of oriented polyamine- and Na-DNA: sequence specific interactions and effects on DNA structure.
    Korolev N; Lyubartsev AP; Laaksonen A; Nordenskiöld L
    Biopolymers; 2004 Apr; 73(5):542-55. PubMed ID: 15048778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction.
    Kabir A; Suresh Kumar G
    PLoS One; 2013; 8(7):e70510. PubMed ID: 23894663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules.
    Dai L; Mu Y; Nordenskiöld L; van der Maarel JR
    Phys Rev Lett; 2008 Mar; 100(11):118301. PubMed ID: 18517834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics simulation study of polyamine- and sodium-DNA. Interplay between polyamine binding and DNA structure.
    Korolev N; Lyubartsev AP; Laaksonen A; Nordenskiöld L
    Eur Biophys J; 2004 Dec; 33(8):671-82. PubMed ID: 15146298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Antony T; Thomas T; Shirahata A; Thomas TJ
    Biochemistry; 1999 Aug; 38(33):10775-84. PubMed ID: 10451373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines and Pectins (I. Ion Exchange and Selectivity).
    Messiaen J; Cambier P; Van Cutsem P
    Plant Physiol; 1997 Feb; 113(2):387-395. PubMed ID: 12223613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for potentiation of bleomycin-mediated degradation of DNA by polyamines. Experimental and molecular mechanical studies.
    Strekowski L; Harden DB; Wydra RL; Stewart KD; Wilson WD
    J Mol Recognit; 1989 Dec; 2(4):158-66. PubMed ID: 2484026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of learning and memory by natural polyamines.
    Guerra GP; Rubin MA; Mello CF
    Pharmacol Res; 2016 Oct; 112():99-118. PubMed ID: 27015893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of cyclopolyamines on the stability and conformation of triplex DNA.
    Antony T; Musso M; Hosseini MW; Brand G; Greenfield NJ; Thomas T; Van Dyke MW; Thomas TJ
    Antisense Nucleic Acid Drug Dev; 1999 Feb; 9(1):13-23. PubMed ID: 10192285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between natural polyamines and tRNA: an 15N NMR analysis.
    Frydman L; Rossomando PC; Frydman V; Fernandez CO; Frydman B; Samejima K
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9186-90. PubMed ID: 1409623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bending of the estrogen response element by polyamines and estrogen receptors alpha and beta: a fluorescence resonance energy transfer study.
    Vijayanathan V; Thomas TJ; Nair SK; Shirahata A; Gallo MA; Thomas T
    Int J Biochem Cell Biol; 2006; 38(7):1191-1206. PubMed ID: 16767802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic effectors and DNA structure: effect of glycine on precipitation of DNA by multivalent cations.
    Flock S; Labarbe R; Houssier C
    J Biomol Struct Dyn; 1995 Aug; 13(1):87-102. PubMed ID: 8527033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of spermine and other polyamines on DNA as revealed by photoaffinity cleavage with polyaminobenzenediazonium salts.
    Schmid N; Behr JP
    Biochemistry; 1991 Apr; 30(17):4357-61. PubMed ID: 2021627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of vacuolar ion channels by polyamines.
    Dobrovinskaya OR; Muñiz J; Pottosin II
    J Membr Biol; 1999 Jan; 167(2):127-40. PubMed ID: 9916144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.