BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31114922)

  • 1. HOT or not: examining the basis of high-occupancy target regions.
    Wreczycka K; Franke V; Uyar B; Wurmus R; Bulut S; Tursun B; Akalin A
    Nucleic Acids Res; 2019 Jun; 47(11):5735-5745. PubMed ID: 31114922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational identification of cell-specific variable regions in ChIP-seq data.
    Andreani T; Albrecht S; Fontaine JF; Andrade-Navarro MA
    Nucleic Acids Res; 2020 May; 48(9):e53. PubMed ID: 32187374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments.
    Jain D; Baldi S; Zabel A; Straub T; Becker PB
    Nucleic Acids Res; 2015 Aug; 43(14):6959-68. PubMed ID: 26117547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A widespread distribution of genomic CeMyoD binding sites revealed and cross validated by ChIP-Chip and ChIP-Seq techniques.
    Lei H; Fukushige T; Niu W; Sarov M; Reinke V; Krause M
    PLoS One; 2010 Dec; 5(12):e15898. PubMed ID: 21209968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.
    Foley JW; Sidow A
    BMC Genomics; 2013 Oct; 14():720. PubMed ID: 24138567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenscreen: A simple method to remove artifactual signals and enrich for true peaks in genomic datasets including ChIP-seq data.
    Klasfeld S; Roulé T; Wagner D
    Plant Cell; 2022 Nov; 34(12):4795-4815. PubMed ID: 36124976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Sister Chromatid Cohesion Protein Genome Occupancy in Drosophila melanogaster by ChIP-seq.
    Dorsett D; Misulovin Z
    Methods Mol Biol; 2017; 1515():125-139. PubMed ID: 27797077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions.
    Bolouri H; Ruzzo WL
    J Comput Biol; 2012 Sep; 19(9):989-97. PubMed ID: 22897152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into mammalian transcription control by systematic analysis of ChIP sequencing data.
    Devailly G; Joshi A
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):409. PubMed ID: 30453943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data.
    Gupta R; Wikramasinghe P; Bhattacharyya A; Perez FA; Pal S; Davuluri RV
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S65. PubMed ID: 20122241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of transcription factor binding map accuracy utilizing knockout-mouse models.
    Krebs W; Schmidt SV; Goren A; De Nardo D; Labzin L; Bovier A; Ulas T; Theis H; Kraut M; Latz E; Beyer M; Schultze JL
    Nucleic Acids Res; 2014 Dec; 42(21):13051-60. PubMed ID: 25378309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins.
    Teytelman L; Thurtle DM; Rine J; van Oudenaarden A
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18602-7. PubMed ID: 24173036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using CisGenome to analyze ChIP-chip and ChIP-seq data.
    Ji H; Jiang H; Ma W; Wong WH
    Curr Protoc Bioinformatics; 2011 Mar; Chapter 2():Unit2.13. PubMed ID: 21400695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing computational methods for transcription factor target gene identification based on ChIP-seq data.
    Sikora-Wohlfeld W; Ackermann M; Christodoulou EG; Singaravelu K; Beyer A
    PLoS Comput Biol; 2013; 9(11):e1003342. PubMed ID: 24278002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide in vivo cross-linking of sequence-specific transcription factors.
    Li XY; Biggin MD
    Methods Mol Biol; 2012; 809():3-26. PubMed ID: 22113265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite.
    Wang X; Zhang X
    BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S3. PubMed ID: 22784574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.