These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 3111523)
1. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins. Petrich JW; Longworth JW; Fleming GR Biochemistry; 1987 May; 26(10):2711-22. PubMed ID: 3111523 [TBL] [Abstract][Full Text] [Related]
3. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa. Rosen P; Segal M; Pecht I Eur J Biochem; 1981 Nov; 120(2):339-44. PubMed ID: 6274637 [TBL] [Abstract][Full Text] [Related]
4. Long-range intramolecular electron transfer in azurins. Farver O; Pecht I Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6968-72. PubMed ID: 2506545 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6. Kukimoto M; Nishiyama M; Tanokura M; Murphy ME; Adman ET; Horinouchi S FEBS Lett; 1996 Sep; 394(1):87-90. PubMed ID: 8925934 [TBL] [Abstract][Full Text] [Related]
6. Role of ligand substitution on long-range electron transfer in azurins. Farver O; Jeuken LJ; Canters GW; Pecht I Eur J Biochem; 2000 Jun; 267(11):3123-9. PubMed ID: 10824096 [TBL] [Abstract][Full Text] [Related]
7. Confirmation that multiexponential fluorescence decay behavior of holoazurin originates from conformational heterogeneity. Hutnik CM; Szabo AG Biochemistry; 1989 May; 28(9):3923-34. PubMed ID: 2502172 [TBL] [Abstract][Full Text] [Related]
8. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility. Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939 [TBL] [Abstract][Full Text] [Related]
9. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins. Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124 [TBL] [Abstract][Full Text] [Related]
10. Spectrochemical studies on the blue copper protein azurin from Alcaligenes denitrificans. Ainscough EW; Bingham AG; Brodie AM; Ellis WR; Gray HB; Loehr TM; Plowman JE; Norris GE; Baker EN Biochemistry; 1987 Jan; 26(1):71-82. PubMed ID: 3030404 [TBL] [Abstract][Full Text] [Related]
11. NMR spectroscopic identification of a hexacyanochromate(III) binding site on Pseudomonas azurin. Cho KC; Blair DF; Banerjee U; Hopfield JJ; Gray HB; Pecht I; Chan SI Biochemistry; 1984 Apr; 23(8):1858-62. PubMed ID: 6426509 [TBL] [Abstract][Full Text] [Related]
12. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study. Szabo AG; Stepanik TM; Wayner DM; Young NM Biophys J; 1983 Mar; 41(3):233-44. PubMed ID: 6404322 [TBL] [Abstract][Full Text] [Related]
13. EPR of azurins from Pseudomonas aeruginosa and Alcaligenes denitrificans demonstrates pH-dependence of the copper-site geometry in Pseudomonas aeruginosa protein. Groeneveld CM; Aasa R; Reinhammar B; Canters GW J Inorg Biochem; 1987 Oct; 31(2):143-54. PubMed ID: 2828541 [TBL] [Abstract][Full Text] [Related]
14. The environment of the tryptophan residue in Pseudomonas aeruginosa azurin and its fluorescence properties. Turoverov KK; Kuznetsova IM; Zaitsev VN Biophys Chem; 1985 Nov; 23(1-2):79-89. PubMed ID: 3937558 [TBL] [Abstract][Full Text] [Related]
15. Electron tunneling in rhenium-modified Pseudomonas aeruginosa azurins. Miller JE; Di Bilio AJ; Wehbi WA; Green MT; Museth AK; Richards JR; Winkler JR; Gray HB Biochim Biophys Acta; 2004 Apr; 1655(1-3):59-63. PubMed ID: 15100017 [TBL] [Abstract][Full Text] [Related]
16. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy. Mei G; Gilardi G; Venanzi M; Rosato N; Canters GW; Agró AF Protein Sci; 1996 Nov; 5(11):2248-54. PubMed ID: 8931143 [TBL] [Abstract][Full Text] [Related]
17. Modification of the electron-transfer sites of Pseudomonas aeruginosa azurin by site-directed mutagenesis. Pascher T; Bergström J; Malmström BG; Vänngård T; Lundberg LG FEBS Lett; 1989 Dec; 258(2):266-8. PubMed ID: 2557238 [TBL] [Abstract][Full Text] [Related]
18. pH dependence of the reduction-oxidation reaction of azurin with cytochrome c-551: role of histidine-35 of azurin in electron transfer. Corin AF; Bersohn R; Cole PE Biochemistry; 1983 Apr; 22(8):2032-8. PubMed ID: 6303402 [TBL] [Abstract][Full Text] [Related]
19. Optical investigation of the electron transfer protein azurin-gold nanoparticle system. Delfino I; Cannistraro S Biophys Chem; 2009 Jan; 139(1):1-7. PubMed ID: 18938024 [TBL] [Abstract][Full Text] [Related]
20. Proton NMR of the histidines of azurin from Alcaligenes faecalis: linkage of histidine-35 with redox kinetics. Mitra S; Bersohn R Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6807-11. PubMed ID: 6960351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]