These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1604 related articles for article (PubMed ID: 31115274)
1. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
2. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Distler T; Boccaccini AR Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385 [TBL] [Abstract][Full Text] [Related]
3. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
4. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
5. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
6. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]
7. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
8. Challenges in Three-Dimensional Printing of Bone Substitutes. Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596 [TBL] [Abstract][Full Text] [Related]
9. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting of a Cell-Laden Conductive Hydrogel Composite. Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791 [TBL] [Abstract][Full Text] [Related]
11. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
12. 3D printing of functional biomaterials for tissue engineering. Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763 [TBL] [Abstract][Full Text] [Related]
13. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Yu C; Yao F; Li J Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350 [TBL] [Abstract][Full Text] [Related]
14. Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Gong J; Schuurmans CCL; Genderen AMV; Cao X; Li W; Cheng F; He JJ; López A; Huerta V; Manríquez J; Li R; Li H; Delavaux C; Sebastian S; Capendale PE; Wang H; Xie J; Yu M; Masereeuw R; Vermonden T; Zhang YS Nat Commun; 2020 Mar; 11(1):1267. PubMed ID: 32152307 [TBL] [Abstract][Full Text] [Related]
15. Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting. Kiyotake EA; Thomas EE; Homburg HB; Milton CK; Smitherman AD; Donahue ND; Fung KM; Wilhelm S; Martin MD; Detamore MS J Biomed Mater Res A; 2022 Feb; 110(2):365-382. PubMed ID: 34390325 [TBL] [Abstract][Full Text] [Related]
16. Advancing Frontiers in Bone Bioprinting. Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530 [TBL] [Abstract][Full Text] [Related]
17. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
18. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]